Effects of local mutations in quadratic iterations.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-01-01 DOI:10.1063/5.0233478
Anca Rǎdulescu, Abraham Longbotham, Ashelee Collier
{"title":"Effects of local mutations in quadratic iterations.","authors":"Anca Rǎdulescu, Abraham Longbotham, Ashelee Collier","doi":"10.1063/5.0233478","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce mutations in the process of discrete iterations of complex quadratic maps in the family fc(z)=z2+c. More specifically, we consider a \"correct\" function fc1 acting on the complex plane. A \"mutation\" fc0 is a different (\"erroneous\") map acting on a locus of given radius r around a mutation focal point ξ∗. The effect of the mutation is interpolated radially to eventually recover the original map fc1 when reaching an outer radius R. We call the resulting map a \"mutated\" map. In the theoretical framework of mutated iterations, we study how a mutation affects the temporal evolution of the system and the asymptotic behavior of its orbits. We use the prisoner set of the system to quantify simultaneously the long-term behavior of the entire space under mutated maps. We analyze how the position, timing, and size of the mutation can alter the system's long-term evolution (as encoded in the topology of its prisoner set). The framework is then discussed as a metaphoric model for studying the impact of copying errors in natural replication systems.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0233478","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce mutations in the process of discrete iterations of complex quadratic maps in the family fc(z)=z2+c. More specifically, we consider a "correct" function fc1 acting on the complex plane. A "mutation" fc0 is a different ("erroneous") map acting on a locus of given radius r around a mutation focal point ξ∗. The effect of the mutation is interpolated radially to eventually recover the original map fc1 when reaching an outer radius R. We call the resulting map a "mutated" map. In the theoretical framework of mutated iterations, we study how a mutation affects the temporal evolution of the system and the asymptotic behavior of its orbits. We use the prisoner set of the system to quantify simultaneously the long-term behavior of the entire space under mutated maps. We analyze how the position, timing, and size of the mutation can alter the system's long-term evolution (as encoded in the topology of its prisoner set). The framework is then discussed as a metaphoric model for studying the impact of copying errors in natural replication systems.

二次迭代中局部突变的影响。
在fc(z)=z2+c族复二次映射的离散迭代过程中引入突变。更具体地说,我们考虑一个作用于复平面上的“正确”函数fc1。一个“突变”f0是一个不同的(“错误的”)映射,作用在一个给定半径r的轨迹上,围绕一个突变焦点ξ∗。当到达外半径r时,对突变的影响进行径向内插,最终恢复原始映射fc1,我们称生成的映射为“突变”映射。在突变迭代的理论框架下,我们研究了突变如何影响系统的时间演化及其轨道的渐近行为。我们使用系统的囚犯集来同时量化突变地图下整个空间的长期行为。我们分析了突变的位置、时间和大小如何改变系统的长期进化(在其囚犯集的拓扑结构中编码)。然后讨论了该框架作为研究自然复制系统中复制错误影响的隐喻模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信