Discovering stochastic basin stability from data in a Filippov competition system with threshold control.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-01-01 DOI:10.1063/5.0238372
Hongxia Zhang, Biliu Zhou, Xiaomei Feng, Rui Fu, Luorong Liu
{"title":"Discovering stochastic basin stability from data in a Filippov competition system with threshold control.","authors":"Hongxia Zhang, Biliu Zhou, Xiaomei Feng, Rui Fu, Luorong Liu","doi":"10.1063/5.0238372","DOIUrl":null,"url":null,"abstract":"<p><p>The existing research studies on the basin stability of stochastic systems typically focus on smooth systems, or the attraction basins are pre-defined as easily solvable regular basins. In this work, we introduce a new framework to discover the basin stability from state time series in the non-smooth stochastic competition system under threshold control. Specifically, we approximate the drift and diffusion with threshold control parameters by an extended Kramers-Moyal expansion with initial state partitioning. Then, we calculate the first transition probability of irregular attraction basins by applying a difference scheme and smooth approximation methods for the system. Numerical simulations of the original system validate the accuracy of the identified drift and diffusion terms, as well as the smooth approximation. Our findings reveal that threshold control modifies the influence of environmental noise on the system basin stability.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0238372","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The existing research studies on the basin stability of stochastic systems typically focus on smooth systems, or the attraction basins are pre-defined as easily solvable regular basins. In this work, we introduce a new framework to discover the basin stability from state time series in the non-smooth stochastic competition system under threshold control. Specifically, we approximate the drift and diffusion with threshold control parameters by an extended Kramers-Moyal expansion with initial state partitioning. Then, we calculate the first transition probability of irregular attraction basins by applying a difference scheme and smooth approximation methods for the system. Numerical simulations of the original system validate the accuracy of the identified drift and diffusion terms, as well as the smooth approximation. Our findings reveal that threshold control modifies the influence of environmental noise on the system basin stability.

从具有阈值控制的Filippov竞争系统数据中发现随机流域稳定性。
现有的随机系统的盆地稳定性研究主要集中在光滑系统上,或者将吸引盆地预先定义为易解的规则盆地。在本文中,我们引入了一个新的框架来发现阈值控制下非光滑随机竞争系统的状态时间序列的流域稳定性。具体来说,我们通过扩展的具有初始状态划分的Kramers-Moyal展开来近似带有阈值控制参数的漂移和扩散。然后,应用差分格式和光滑逼近方法计算了不规则吸引盆地的第一次转移概率。原始系统的数值模拟验证了所识别的漂移和扩散项的准确性,以及光滑逼近。研究结果表明,阈值控制调节了环境噪声对系统流域稳定性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信