Rikeish R Muralitharan, Tenghao Zheng, Evany Dinakis, Liang Xie, Anastasia Barbaro-Wahl, Hamdi A Jama, Michael Nakai, Madeleine Patterson, Kwan Charmaine Leung, Zoe McArdle, Katrina Mirabito Colafella, Chad Johnson, Wendy Qin, Ekaterina Salimova, Natalie Bitto, Maria-Kaparakis Liaskos, David M Kaye, Joanne A O'Donnell, Charles R Mackay, Francine Z Marques
{"title":"Gut Microbiota Metabolites Sensed by Host GPR41/43 Protect Against Hypertension.","authors":"Rikeish R Muralitharan, Tenghao Zheng, Evany Dinakis, Liang Xie, Anastasia Barbaro-Wahl, Hamdi A Jama, Michael Nakai, Madeleine Patterson, Kwan Charmaine Leung, Zoe McArdle, Katrina Mirabito Colafella, Chad Johnson, Wendy Qin, Ekaterina Salimova, Natalie Bitto, Maria-Kaparakis Liaskos, David M Kaye, Joanne A O'Donnell, Charles R Mackay, Francine Z Marques","doi":"10.1161/CIRCRESAHA.124.325770","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Fermentation of dietary fiber by the gut microbiota leads to the production of metabolites called short-chain fatty acids, which lower blood pressure and exert cardioprotective effects. Short-chain fatty acids activate host signaling responses via the functionally redundant receptors GPR41 and GPR43, which are highly expressed by immune cells. Whether and how these receptors protect against hypertension or mediate the cardioprotective effects of dietary fiber remains unknown.</p><p><strong>Methods: </strong>Cardiovascular phenotype was assessed in untreated and Ang II (angiotensin II) treated hypertensive wild-type and GPR41/43 knockout (KO) double knockout male mice fed diets with different levels of fiber content. Some mice received TLR4-antagonist treatment and bone marrow chimeras. Single-nucleotide polymorphisms associated with <i>GPR41</i> and <i>GPR43</i> expression were assessed in UK Biobank participants.</p><p><strong>Results: </strong>Untreated GPR41/43KO mice had unaltered blood pressure but had greater cardiac and renal collagen deposition with higher macrophage numbers in the kidney compared with wild-type mice. Ang II-treated GPR41/43KO mice showed higher systolic blood pressure, cardiorenal weights and collagen deposition, and increased gut permeability, which allows the translocation of gastrointestinal bacterial components such as lipopolysaccharides into the circulation. The use of an antagonist to the lipopolysaccharide receptor, TLR4, a potent proinflammatory signaling molecule, restored the cardiovascular phenotype in GPR41/43KO mice. The lack of GPR41/43 expression in the immune compartment was sufficient to lead to a worsened hypertensive phenotype. We also demonstrate that GPR41/43 is, at least partially, responsible for the blood pressure-lowering and cardioprotective effects of a high-fiber diet. Finally, using the UK Biobank, we provide translational evidence that variants associated with lower expression of both GPR41 and GPR43 are more prevalent in participants with hypertension.</p><p><strong>Conclusions: </strong>Our findings highlight that lack of short-chain fatty acid-receptor signaling via both GPR41 and GPR43 increases risk of high blood pressure, suggesting treatments that target these receptors could be a novel strategy to prevent or treat hypertension.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":""},"PeriodicalIF":16.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCRESAHA.124.325770","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Fermentation of dietary fiber by the gut microbiota leads to the production of metabolites called short-chain fatty acids, which lower blood pressure and exert cardioprotective effects. Short-chain fatty acids activate host signaling responses via the functionally redundant receptors GPR41 and GPR43, which are highly expressed by immune cells. Whether and how these receptors protect against hypertension or mediate the cardioprotective effects of dietary fiber remains unknown.
Methods: Cardiovascular phenotype was assessed in untreated and Ang II (angiotensin II) treated hypertensive wild-type and GPR41/43 knockout (KO) double knockout male mice fed diets with different levels of fiber content. Some mice received TLR4-antagonist treatment and bone marrow chimeras. Single-nucleotide polymorphisms associated with GPR41 and GPR43 expression were assessed in UK Biobank participants.
Results: Untreated GPR41/43KO mice had unaltered blood pressure but had greater cardiac and renal collagen deposition with higher macrophage numbers in the kidney compared with wild-type mice. Ang II-treated GPR41/43KO mice showed higher systolic blood pressure, cardiorenal weights and collagen deposition, and increased gut permeability, which allows the translocation of gastrointestinal bacterial components such as lipopolysaccharides into the circulation. The use of an antagonist to the lipopolysaccharide receptor, TLR4, a potent proinflammatory signaling molecule, restored the cardiovascular phenotype in GPR41/43KO mice. The lack of GPR41/43 expression in the immune compartment was sufficient to lead to a worsened hypertensive phenotype. We also demonstrate that GPR41/43 is, at least partially, responsible for the blood pressure-lowering and cardioprotective effects of a high-fiber diet. Finally, using the UK Biobank, we provide translational evidence that variants associated with lower expression of both GPR41 and GPR43 are more prevalent in participants with hypertension.
Conclusions: Our findings highlight that lack of short-chain fatty acid-receptor signaling via both GPR41 and GPR43 increases risk of high blood pressure, suggesting treatments that target these receptors could be a novel strategy to prevent or treat hypertension.
期刊介绍:
Circulation Research is a peer-reviewed journal that serves as a forum for the highest quality research in basic cardiovascular biology. The journal publishes studies that utilize state-of-the-art approaches to investigate mechanisms of human disease, as well as translational and clinical research that provide fundamental insights into the basis of disease and the mechanism of therapies.
Circulation Research has a broad audience that includes clinical and academic cardiologists, basic cardiovascular scientists, physiologists, cellular and molecular biologists, and cardiovascular pharmacologists. The journal aims to advance the understanding of cardiovascular biology and disease by disseminating cutting-edge research to these diverse communities.
In terms of indexing, Circulation Research is included in several prominent scientific databases, including BIOSIS, CAB Abstracts, Chemical Abstracts, Current Contents, EMBASE, and MEDLINE. This ensures that the journal's articles are easily discoverable and accessible to researchers in the field.
Overall, Circulation Research is a reputable publication that attracts high-quality research and provides a platform for the dissemination of important findings in basic cardiovascular biology and its translational and clinical applications.