AMPA Receptors in Synaptic Plasticity, Memory Function, and Brain Diseases.

IF 3.6 4区 医学 Q3 CELL BIOLOGY
Cristina A Muñoz de León-López, Marta Carretero-Rey, Zafar U Khan
{"title":"AMPA Receptors in Synaptic Plasticity, Memory Function, and Brain Diseases.","authors":"Cristina A Muñoz de León-López, Marta Carretero-Rey, Zafar U Khan","doi":"10.1007/s10571-024-01529-7","DOIUrl":null,"url":null,"abstract":"<p><p>Tetrameric AMPA-type ionotropic glutamate receptors are primary transducers of fast excitatory synaptic transmission in the central nervous system, and their properties and abundance at the synaptic surface are crucial determinants of synaptic efficacy in neuronal communication across the brain. The induction of long-term potentiation (LTP) leads to the insertion of GluA1-containing AMPA receptors at the synaptic surface, whereas during long-term depression (LTD), these receptors are internalized into the cytoplasm of the spine. Disruptions in the trafficking of AMPA receptors to and from the synaptic surface attenuate both forms of synaptic plasticity. Homeostatic scaling up and scaling down, which are additional types of plasticity similar to LTP and LTD, are also regulated by the insertion and removal of GluA1-containing AMPA receptors from the synaptic surface. The trafficking of AMPA receptors is an intricate process assisted by various proteins. Furthermore, AMPA receptors are critical for the formation and consolidation of various types of memory, and alterations in their function are intimately associated with cognitive dysfunction in aging and several neurological and psychiatric diseases. In this review, we will provide an overview of the current understanding of how AMPA receptors regulate various forms of synaptic plasticity, their contribution to memory functions, and their role in aging and brain diseases.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":"45 1","pages":"14"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754374/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10571-024-01529-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tetrameric AMPA-type ionotropic glutamate receptors are primary transducers of fast excitatory synaptic transmission in the central nervous system, and their properties and abundance at the synaptic surface are crucial determinants of synaptic efficacy in neuronal communication across the brain. The induction of long-term potentiation (LTP) leads to the insertion of GluA1-containing AMPA receptors at the synaptic surface, whereas during long-term depression (LTD), these receptors are internalized into the cytoplasm of the spine. Disruptions in the trafficking of AMPA receptors to and from the synaptic surface attenuate both forms of synaptic plasticity. Homeostatic scaling up and scaling down, which are additional types of plasticity similar to LTP and LTD, are also regulated by the insertion and removal of GluA1-containing AMPA receptors from the synaptic surface. The trafficking of AMPA receptors is an intricate process assisted by various proteins. Furthermore, AMPA receptors are critical for the formation and consolidation of various types of memory, and alterations in their function are intimately associated with cognitive dysfunction in aging and several neurological and psychiatric diseases. In this review, we will provide an overview of the current understanding of how AMPA receptors regulate various forms of synaptic plasticity, their contribution to memory functions, and their role in aging and brain diseases.

AMPA受体在突触可塑性、记忆功能和脑部疾病中的作用。
四聚体ampa型嗜电性谷氨酸受体是中枢神经系统快速兴奋性突触传递的主要转导器,其性质和在突触表面的丰度是决定突触在脑内神经元通信中有效性的关键因素。长期增强(LTP)的诱导导致含有glua1的AMPA受体插入突触表面,而在长期抑制(LTD)期间,这些受体被内化到脊柱的细胞质中。AMPA受体进出突触表面的运输中断会减弱两种形式的突触可塑性。与LTP和LTD类似,内稳态放大和缩小是另一种类型的可塑性,也受到突触表面含有glua1的AMPA受体的插入和移除的调节。AMPA受体的转运是一个复杂的过程,由各种蛋白质辅助。此外,AMPA受体对各种类型记忆的形成和巩固至关重要,其功能的改变与衰老和几种神经和精神疾病的认知功能障碍密切相关。在这篇综述中,我们将概述AMPA受体如何调节各种形式的突触可塑性,它们对记忆功能的贡献,以及它们在衰老和脑部疾病中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
137
审稿时长
4-8 weeks
期刊介绍: Cellular and Molecular Neurobiology publishes original research concerned with the analysis of neuronal and brain function at the cellular and subcellular levels. The journal offers timely, peer-reviewed articles that describe anatomic, genetic, physiologic, pharmacologic, and biochemical approaches to the study of neuronal function and the analysis of elementary mechanisms. Studies are presented on isolated mammalian tissues and intact animals, with investigations aimed at the molecular mechanisms or neuronal responses at the level of single cells. Cellular and Molecular Neurobiology also presents studies of the effects of neurons on other organ systems, such as analysis of the electrical or biochemical response to neurotransmitters or neurohormones on smooth muscle or gland cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信