CRAT downregulation promotes ovarian cancer progression by facilitating mitochondrial metabolism through decreasing the acetylation of PGC-1α.

IF 6.1 2区 生物学 Q1 CELL BIOLOGY
Zhen Zhang, Shuhua Zhao, Xiaohui Lv, Yan Gao, Qian Guo, Yanjie Ren, Yuanyuan He, Yihua Jin, Hong Yang, Shujuan Liu, Xiaohong Zhang
{"title":"CRAT downregulation promotes ovarian cancer progression by facilitating mitochondrial metabolism through decreasing the acetylation of PGC-1α.","authors":"Zhen Zhang, Shuhua Zhao, Xiaohui Lv, Yan Gao, Qian Guo, Yanjie Ren, Yuanyuan He, Yihua Jin, Hong Yang, Shujuan Liu, Xiaohong Zhang","doi":"10.1038/s41420-025-02294-2","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial dysfunctions are closely associated with different types of disease, including cancer. Carnitine acetyltransferase (CRAT) is a mitochondrial-localized enzyme catalyzing the reversible transfer of acyl groups from an acyl-CoA thioester to carnitine and regulates the ratio of acyl-CoA/CoA. Our bioinformatics analysis using public database revealed a significant decrease of CRAT expression in ovarian cancer (OC). However, the functions of CRAT have rarely been investigated in human cancers, especially in OC. Here, we found a frequent down-regulation of CRAT in OC, which is mainly caused by up-regulation of miR-132-5p. Downregulation of CRAT was significantly associated with shorter survival time for patients with OC. Forced expression of CRAT suppressed OC growth and metastasis by inducing cell cycle arrest and epithelial to mesenchymal transition (EMT). By contrast, CRAT knockdown promoted OC growth and metastasis. Mechanistically, we found that CRAT downregulation promoted OC growth and metastasis by increasing mitochondrial biogenesis to facilitate mitochondrial metabolism through reducing the acetylation of peroxisome proliferator-activated receptor-γ coactivator (PGC-1α). In summary, CRAT functions as a critical tumor suppressor in OC progression by enhancing PGC-1α-mediated mitochondrial biogenesis and metabolism, suggesting CRAT as a potential therapeutic target in treatment of OC.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"15"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743791/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02294-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mitochondrial dysfunctions are closely associated with different types of disease, including cancer. Carnitine acetyltransferase (CRAT) is a mitochondrial-localized enzyme catalyzing the reversible transfer of acyl groups from an acyl-CoA thioester to carnitine and regulates the ratio of acyl-CoA/CoA. Our bioinformatics analysis using public database revealed a significant decrease of CRAT expression in ovarian cancer (OC). However, the functions of CRAT have rarely been investigated in human cancers, especially in OC. Here, we found a frequent down-regulation of CRAT in OC, which is mainly caused by up-regulation of miR-132-5p. Downregulation of CRAT was significantly associated with shorter survival time for patients with OC. Forced expression of CRAT suppressed OC growth and metastasis by inducing cell cycle arrest and epithelial to mesenchymal transition (EMT). By contrast, CRAT knockdown promoted OC growth and metastasis. Mechanistically, we found that CRAT downregulation promoted OC growth and metastasis by increasing mitochondrial biogenesis to facilitate mitochondrial metabolism through reducing the acetylation of peroxisome proliferator-activated receptor-γ coactivator (PGC-1α). In summary, CRAT functions as a critical tumor suppressor in OC progression by enhancing PGC-1α-mediated mitochondrial biogenesis and metabolism, suggesting CRAT as a potential therapeutic target in treatment of OC.

CRAT下调通过降低PGC-1α的乙酰化来促进线粒体代谢,从而促进卵巢癌的进展。
线粒体功能障碍与不同类型的疾病密切相关,包括癌症。肉毒碱乙酰转移酶(CRAT)是一种线粒体定位的酶,催化酰基从酰基辅酶a硫酯可逆转移到肉毒碱,并调节酰基辅酶a /辅酶a的比例。我们利用公共数据库进行生物信息学分析,发现CRAT在卵巢癌(OC)中的表达显著降低。然而,CRAT在人类癌症中的功能很少被研究,特别是在OC中。我们在OC中发现CRAT经常下调,这主要是由miR-132-5p上调引起的。CRAT下调与OC患者的生存时间缩短显著相关。CRAT的强制表达通过诱导细胞周期阻滞和上皮向间质转化(EMT)来抑制OC的生长和转移。相比之下,CRAT敲低促进了OC的生长和转移。在机制上,我们发现CRAT下调通过降低过氧化物酶体增殖体激活受体-γ共激活因子(PGC-1α)的乙酰化,增加线粒体生物发生,促进线粒体代谢,从而促进OC的生长和转移。综上所述,CRAT通过增强pgc -1α介导的线粒体生物发生和代谢,在OC进展中发挥关键抑癌作用,提示CRAT是治疗OC的潜在治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death Discovery
Cell Death Discovery Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
8.30
自引率
1.40%
发文量
468
审稿时长
9 weeks
期刊介绍: Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary. Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信