Taxifolin Protects Against 5-Fluorouracil-Induced Cardiotoxicity in Mice Through Mitigating Oxidative Stress, Inflammation, and Apoptosis: Possible Involvement of Sirt1/Nrf2/HO-1 Signaling.
Mohammad H Abukhalil, Zina Al-Alami, Manal A Alfwuaires, Mohd Rasheeduddin Imran, Saleem H Aladaileh, Osama Y Althunibat
{"title":"Taxifolin Protects Against 5-Fluorouracil-Induced Cardiotoxicity in Mice Through Mitigating Oxidative Stress, Inflammation, and Apoptosis: Possible Involvement of Sirt1/Nrf2/HO-1 Signaling.","authors":"Mohammad H Abukhalil, Zina Al-Alami, Manal A Alfwuaires, Mohd Rasheeduddin Imran, Saleem H Aladaileh, Osama Y Althunibat","doi":"10.1007/s12012-025-09962-w","DOIUrl":null,"url":null,"abstract":"<p><p>Although 5-fluorouracil (5-FU) is widely utilized in cancer treatment, its side effects, including cardiotoxicity, limit its use. Taxifolin (TAX) is a bioactive anti-inflammatory and antioxidant flavonoid. This study aimed to elucidate the protective effect of TAX against 5-FU-induced cardiac injury in male mice. Mice were treated with TAX (25 and 50 mg/kg, orally) for 10 days and a single dose of 150 mg/kg 5-FU at day 8. Mice intoxicated with 5-FU showed increased creatine kinase-MB and lactate dehydrogenase activities and troponin I levels, with multiple cardiac histopathological changes. They also showed a significant increase in cardiac malondialdehyde (MDA) and nitric oxide (NO) and decreases in myocardial reduced glutathione (GSH) content and superoxide dismutase (SOD) and catalase (CAT) activities (P < 0.001). Pretreatment of 5-FU-injected mice with TAX suppressed cardiac injury, decreased MDA and NO contents (P < 0.001), and boosted antioxidant defenses in the myocardium. Moreover, TAX attenuated cardiac inflammatory response, as evidenced by the decreased expression levels of cardiac NF-κB p65, inducible nitric oxide synthase (iNOS), and pro-inflammatory cytokines (P < 0.001). Largely, TAX ameliorated the decrease in Bcl-2 expression and the increase in BAX and caspase-3 in the heart. It also restored the cardiac Sirt1/Nrf2/HO-1 signaling pathway. In conclusion, TAX showed significant cardioprotective effects on 5-FU-induced cardiac injury and might represent a promising adjuvant in preventing cardiac injury associated with oxidative stress and inflammation.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12012-025-09962-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Although 5-fluorouracil (5-FU) is widely utilized in cancer treatment, its side effects, including cardiotoxicity, limit its use. Taxifolin (TAX) is a bioactive anti-inflammatory and antioxidant flavonoid. This study aimed to elucidate the protective effect of TAX against 5-FU-induced cardiac injury in male mice. Mice were treated with TAX (25 and 50 mg/kg, orally) for 10 days and a single dose of 150 mg/kg 5-FU at day 8. Mice intoxicated with 5-FU showed increased creatine kinase-MB and lactate dehydrogenase activities and troponin I levels, with multiple cardiac histopathological changes. They also showed a significant increase in cardiac malondialdehyde (MDA) and nitric oxide (NO) and decreases in myocardial reduced glutathione (GSH) content and superoxide dismutase (SOD) and catalase (CAT) activities (P < 0.001). Pretreatment of 5-FU-injected mice with TAX suppressed cardiac injury, decreased MDA and NO contents (P < 0.001), and boosted antioxidant defenses in the myocardium. Moreover, TAX attenuated cardiac inflammatory response, as evidenced by the decreased expression levels of cardiac NF-κB p65, inducible nitric oxide synthase (iNOS), and pro-inflammatory cytokines (P < 0.001). Largely, TAX ameliorated the decrease in Bcl-2 expression and the increase in BAX and caspase-3 in the heart. It also restored the cardiac Sirt1/Nrf2/HO-1 signaling pathway. In conclusion, TAX showed significant cardioprotective effects on 5-FU-induced cardiac injury and might represent a promising adjuvant in preventing cardiac injury associated with oxidative stress and inflammation.
期刊介绍:
Cardiovascular Toxicology is the only journal dedicated to publishing contemporary issues, timely reviews, and experimental and clinical data on toxicological aspects of cardiovascular disease. CT publishes papers that will elucidate the effects, molecular mechanisms, and signaling pathways of environmental toxicants on the cardiovascular system. Also covered are the detrimental effects of new cardiovascular drugs, and cardiovascular effects of non-cardiovascular drugs, anti-cancer chemotherapy, and gene therapy. In addition, Cardiovascular Toxicology reports safety and toxicological data on new cardiovascular and non-cardiovascular drugs.