{"title":"AntiBinder: utilizing bidirectional attention and hybrid encoding for precise antibody-antigen interaction prediction.","authors":"Kaiwen Zhang, Yuhao Tao, Fei Wang","doi":"10.1093/bib/bbaf008","DOIUrl":null,"url":null,"abstract":"<p><p>Antibodies play a key role in medical diagnostics and therapeutics. Accurately predicting antibody-antigen binding is essential for developing effective treatments. Traditional protein-protein interaction prediction methods often fall short because they do not account for the unique structural and dynamic properties of antibodies and antigens. In this study, we present AntiBinder, a novel predictive model specifically designed to address these challenges. AntiBinder integrates the unique structural and sequence characteristics of antibodies and antigens into its framework and employs a bidirectional cross-attention mechanism to automatically learn the intrinsic mechanisms of antigen-antibody binding, eliminating the need for manual feature engineering. Our comprehensive experiments, which include predicting interactions between known antigens and new antibodies, predicting the binding of previously unseen antigens, and predicting cross-species antigen-antibody interactions, demonstrate that AntiBinder outperforms existing state-of-the-art methods. Notably, AntiBinder excels in predicting interactions with unseen antigens and maintains a reasonable level of predictive capability in challenging cross-species prediction tasks. AntiBinder's ability to model complex antigen-antibody interactions highlights its potential applications in biomedical research and therapeutic development, including the design of vaccines and antibody therapies for rapidly emerging infectious diseases.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744619/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf008","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Antibodies play a key role in medical diagnostics and therapeutics. Accurately predicting antibody-antigen binding is essential for developing effective treatments. Traditional protein-protein interaction prediction methods often fall short because they do not account for the unique structural and dynamic properties of antibodies and antigens. In this study, we present AntiBinder, a novel predictive model specifically designed to address these challenges. AntiBinder integrates the unique structural and sequence characteristics of antibodies and antigens into its framework and employs a bidirectional cross-attention mechanism to automatically learn the intrinsic mechanisms of antigen-antibody binding, eliminating the need for manual feature engineering. Our comprehensive experiments, which include predicting interactions between known antigens and new antibodies, predicting the binding of previously unseen antigens, and predicting cross-species antigen-antibody interactions, demonstrate that AntiBinder outperforms existing state-of-the-art methods. Notably, AntiBinder excels in predicting interactions with unseen antigens and maintains a reasonable level of predictive capability in challenging cross-species prediction tasks. AntiBinder's ability to model complex antigen-antibody interactions highlights its potential applications in biomedical research and therapeutic development, including the design of vaccines and antibody therapies for rapidly emerging infectious diseases.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.