Jinming Cheng, Xinyi Jin, Gordon K Smyth, Yunshun Chen
{"title":"Benchmarking cell type annotation methods for 10x Xenium spatial transcriptomics data.","authors":"Jinming Cheng, Xinyi Jin, Gordon K Smyth, Yunshun Chen","doi":"10.1186/s12859-025-06044-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Imaging-based spatial transcriptomics technologies allow us to explore spatial gene expression profiles at the cellular level. Cell type annotation of imaging-based spatial data is challenging due to the small gene panel, but it is a crucial step for downstream analyses. Many good reference-based cell type annotation tools have been developed for single-cell RNA sequencing and sequencing-based spatial transcriptomics data. However, the performance of the reference-based cell type annotation tools on imaging-based spatial transcriptomics data has not been well studied yet.</p><p><strong>Results: </strong>We compared performance of five reference-based methods (SingleR, Azimuth, RCTD, scPred and scmapCell) with the marker-gene-based manual annotation method on an imaging-based Xenium data of human breast cancer. A practical workflow has been demonstrated for preparing a high-quality single-cell RNA reference, evaluating the accuracy, and estimating the running time for reference-based cell type annotation tools.</p><p><strong>Conclusions: </strong>SingleR was the best performing reference-based cell type annotation tool for the Xenium platform, being fast, accurate and easy to use, with results closely matching those of manual annotation.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"22"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744978/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06044-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Imaging-based spatial transcriptomics technologies allow us to explore spatial gene expression profiles at the cellular level. Cell type annotation of imaging-based spatial data is challenging due to the small gene panel, but it is a crucial step for downstream analyses. Many good reference-based cell type annotation tools have been developed for single-cell RNA sequencing and sequencing-based spatial transcriptomics data. However, the performance of the reference-based cell type annotation tools on imaging-based spatial transcriptomics data has not been well studied yet.
Results: We compared performance of five reference-based methods (SingleR, Azimuth, RCTD, scPred and scmapCell) with the marker-gene-based manual annotation method on an imaging-based Xenium data of human breast cancer. A practical workflow has been demonstrated for preparing a high-quality single-cell RNA reference, evaluating the accuracy, and estimating the running time for reference-based cell type annotation tools.
Conclusions: SingleR was the best performing reference-based cell type annotation tool for the Xenium platform, being fast, accurate and easy to use, with results closely matching those of manual annotation.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.