Modulating the structure of O3-type NaNi1/3Fe1/3Mn1/3O2 for high-performance sodium-ion batteries via Na2MoO4 reactive wetting coating combined with Mo doping and interface reconstruction.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Journal of Colloid and Interface Science Pub Date : 2025-04-15 Epub Date: 2025-01-13 DOI:10.1016/j.jcis.2025.01.087
Miaoyan Song, Lin Xu, Kemeng Wang, Guohu Chen, Zhaohong Tang, Kaiwen Zhou, Wenwei Wu, Xuehang Wu
{"title":"Modulating the structure of O3-type NaNi<sub>1/3</sub>Fe<sub>1/3</sub>Mn<sub>1/3</sub>O<sub>2</sub> for high-performance sodium-ion batteries via Na<sub>2</sub>MoO<sub>4</sub> reactive wetting coating combined with Mo doping and interface reconstruction.","authors":"Miaoyan Song, Lin Xu, Kemeng Wang, Guohu Chen, Zhaohong Tang, Kaiwen Zhou, Wenwei Wu, Xuehang Wu","doi":"10.1016/j.jcis.2025.01.087","DOIUrl":null,"url":null,"abstract":"<p><p>O3-type NaNi<sub>1/3</sub>Fe<sub>1/3</sub>Mn<sub>1/3</sub>O<sub>2</sub> (NFM) is considered as a promising cathode material for sodium-ion batteries (SIBs) due to its high theoretical energy density and low production cost. However, the applications of NFM are restricted owing to detrimental interfacial side reactions and phase evolution during cycling. Herein, a three-in-one modification strategy, including Na<sub>2</sub>MoO<sub>4</sub> coating, surface reconstruction from layered to spinel phase, and Mo<sup>6+</sup> doping, is proposed to design NFM. A uniform and tight Na<sub>2</sub>MoO<sub>4</sub> coating layer formed via reactive wetting mechanism can effectively inhibit the unfavorable side reactions between cathode and electrolyte. The formation of nanoscale spinel layer can anchor the interior layered structure, leading to a decrease in volume change during the sodiation/desodiation process. The incorporation of Mo<sup>6+</sup> with a high valence state and strong MoO bonds into the O3 phase promotes the expansion of transition-metal layer spacing and enhances the structural stability. As a result, tri-modified NFM exhibits superior cycling stability with a capacity retention of 85.20 % after 300 cycles at 100 mA g<sup>-1</sup> and rate performance with a discharge capacity of 56.9 mAh/g at 2000 mA g<sup>-1</sup>, outperforming those of pristine NFM (61.76 % and 39.4 mAh/g). This synergistic modification approach provides a new avenue to improve the performance of layered-oxide cathode materials for SIBs.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"684 Pt 2","pages":"148-158"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2025.01.087","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

O3-type NaNi1/3Fe1/3Mn1/3O2 (NFM) is considered as a promising cathode material for sodium-ion batteries (SIBs) due to its high theoretical energy density and low production cost. However, the applications of NFM are restricted owing to detrimental interfacial side reactions and phase evolution during cycling. Herein, a three-in-one modification strategy, including Na2MoO4 coating, surface reconstruction from layered to spinel phase, and Mo6+ doping, is proposed to design NFM. A uniform and tight Na2MoO4 coating layer formed via reactive wetting mechanism can effectively inhibit the unfavorable side reactions between cathode and electrolyte. The formation of nanoscale spinel layer can anchor the interior layered structure, leading to a decrease in volume change during the sodiation/desodiation process. The incorporation of Mo6+ with a high valence state and strong MoO bonds into the O3 phase promotes the expansion of transition-metal layer spacing and enhances the structural stability. As a result, tri-modified NFM exhibits superior cycling stability with a capacity retention of 85.20 % after 300 cycles at 100 mA g-1 and rate performance with a discharge capacity of 56.9 mAh/g at 2000 mA g-1, outperforming those of pristine NFM (61.76 % and 39.4 mAh/g). This synergistic modification approach provides a new avenue to improve the performance of layered-oxide cathode materials for SIBs.

Na2MoO4反应性润湿涂层结合Mo掺杂和界面重构对高性能钠离子电池中o3型NaNi1/3Fe1/3Mn1/3O2结构的调控
o3型NaNi1/3Fe1/3Mn1/3O2 (NFM)具有较高的理论能量密度和较低的生产成本,被认为是一种很有前途的钠离子电池正极材料。然而,由于循环过程中有害的界面副反应和相演化,限制了NFM的应用。本文提出了一种三位一体的改性策略,包括Na2MoO4涂层、层状到尖晶石相的表面重建和Mo6+掺杂来设计NFM。通过反应性润湿机制形成均匀致密的Na2MoO4涂层,可有效抑制阴极与电解质之间的不良副反应。纳米尖晶石层的形成可以锚定内部的层状结构,从而减少钠化/脱钠过程中的体积变化。在O3相中加入具有高价态和强MoO键的Mo6+,促进了过渡金属层间距的扩大,提高了结构的稳定性。结果表明,三改性NFM表现出优异的循环稳定性,在100 mA g-1下循环300次后容量保持率为85.20%,在2000 mA g-1下放电容量为56.9 mAh/g,优于原始NFM(61.76%和39.4 mAh/g)。这种协同改性方法为提高sib层氧化阴极材料的性能提供了一条新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信