Qiaomei Luo , Yuanjiang Lv , Peng Zhang , Zipu Zhao , Xiaobing Bao , Lei Gou , Hao Luo , Xiaoyong Fan , Fei Ma
{"title":"Interface engineering of hollow Janus-structured NiCoP/P-MoS2 heterojunction as self-supported electrode enables boosted alkaline hydrogen evolution reaction","authors":"Qiaomei Luo , Yuanjiang Lv , Peng Zhang , Zipu Zhao , Xiaobing Bao , Lei Gou , Hao Luo , Xiaoyong Fan , Fei Ma","doi":"10.1016/j.jcis.2025.01.069","DOIUrl":null,"url":null,"abstract":"<div><div>Transition metal phosphorus (TMPs) and sulfides have attracted extensive attention as important candidates to replace noble metal-based hydrogen evolution (HER) catalysts. However, the insufficient specific surface area, low conductivity and easy detachments from electrode seriously affect the HER catalytic activity and stability. Herein, a novel self-supported hollow Janus-structured NiCoP/P-MoS<sub>2</sub> heterojunction is designed on carbon cloth (CC) as high-performance electrocatalyst for alkaline HER. The binder-free NiCoP/P-MoS<sub>2</sub>/CC electrode with well-dispersed hollow structure exhibits acceptable durability and low overpotential, which requires overpotential of 52.6 mV to reach 10 mA cm<sup>−2</sup>, far superior to that of NiCoP/CC (111.2 mV), P-MoS<sub>2</sub>/CC (213.3 mV) electrode and also the corresponding NiCoP/P-MoS<sub>2</sub> powder catalyst (113.1 mV). Experimental and theoretical results confirm that heterointerface interaction can improve the electronic state, accelerate charge transfer and optimize hydrogen adsorption energy, resulting in boosted HER kinetic process. Additionally, self-supported strategy is conducive to tightly anchoring high-quality active substances with well-organized hollow array structure, which significantly prevents the catalyst agglomeration and shedding, leading to the improved HER stability. This work offers valuable insights into the catalytic mechanisms and provides an avenue for designing hierarchical architecture for highly efficient and stable HER electrocatalysts.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"684 ","pages":"Pages 668-677"},"PeriodicalIF":9.7000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725000839","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Transition metal phosphorus (TMPs) and sulfides have attracted extensive attention as important candidates to replace noble metal-based hydrogen evolution (HER) catalysts. However, the insufficient specific surface area, low conductivity and easy detachments from electrode seriously affect the HER catalytic activity and stability. Herein, a novel self-supported hollow Janus-structured NiCoP/P-MoS2 heterojunction is designed on carbon cloth (CC) as high-performance electrocatalyst for alkaline HER. The binder-free NiCoP/P-MoS2/CC electrode with well-dispersed hollow structure exhibits acceptable durability and low overpotential, which requires overpotential of 52.6 mV to reach 10 mA cm−2, far superior to that of NiCoP/CC (111.2 mV), P-MoS2/CC (213.3 mV) electrode and also the corresponding NiCoP/P-MoS2 powder catalyst (113.1 mV). Experimental and theoretical results confirm that heterointerface interaction can improve the electronic state, accelerate charge transfer and optimize hydrogen adsorption energy, resulting in boosted HER kinetic process. Additionally, self-supported strategy is conducive to tightly anchoring high-quality active substances with well-organized hollow array structure, which significantly prevents the catalyst agglomeration and shedding, leading to the improved HER stability. This work offers valuable insights into the catalytic mechanisms and provides an avenue for designing hierarchical architecture for highly efficient and stable HER electrocatalysts.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies