An innovative strategy for constructing multicore yolk-shell Si/C anodes for lithium-ion batteries

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Yingjun Qiao , Yuxin Hu , Zhiqiang Qian , Meizhen Qu , Zhong Liu
{"title":"An innovative strategy for constructing multicore yolk-shell Si/C anodes for lithium-ion batteries","authors":"Yingjun Qiao ,&nbsp;Yuxin Hu ,&nbsp;Zhiqiang Qian ,&nbsp;Meizhen Qu ,&nbsp;Zhong Liu","doi":"10.1016/j.jcis.2025.01.078","DOIUrl":null,"url":null,"abstract":"<div><div>The yolk-shell architecture offers a promising solution to the challenges of silicon (Si) anodes in lithium-ion batteries (LIBs), particularly in addressing the significant volume changes that occur during charge and discharge cycles. However, traditional construction methods often rely on sacrificial templates and acid or alkali etching, which limits industrial applicability. In this work, we successfully constructed a silicon/carbon (Si/C) composite with a multicore yolk-shell structure using scalable spray drying technology and in-situ growth of metal–organic frameworks (MOFs) at room temperature. By controlling the spray drying parameters and the size of the MOF, we achieved a controllable adjustment of cavity size and shell integrity without the need for sacrificial templates, facilitating large-scale preparation. Electrochemical characterization shows that the composites exhibit impressive performance, achieving a reversible specific capacity of 1,054.5 mAh g<sup>−1</sup> after 100 cycles at 0.5 A g<sup>−1</sup>, and retaining 734.8 mAh g<sup>−1</sup> after 400 cycles at 1 A g<sup>−1</sup>. Moreover, finite element analysis (FEA) revealed another reason why the yolk-shell structure improves the performance of Si anodes: the presence of cavities promotes ion diffusion processes. This study provides a new synthetic paradigm for preparing Si-C composite materials with yolk shell structure and offers new insights into the improvement mechanism of this structure.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"684 ","pages":"Pages 678-689"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002197972500092X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The yolk-shell architecture offers a promising solution to the challenges of silicon (Si) anodes in lithium-ion batteries (LIBs), particularly in addressing the significant volume changes that occur during charge and discharge cycles. However, traditional construction methods often rely on sacrificial templates and acid or alkali etching, which limits industrial applicability. In this work, we successfully constructed a silicon/carbon (Si/C) composite with a multicore yolk-shell structure using scalable spray drying technology and in-situ growth of metal–organic frameworks (MOFs) at room temperature. By controlling the spray drying parameters and the size of the MOF, we achieved a controllable adjustment of cavity size and shell integrity without the need for sacrificial templates, facilitating large-scale preparation. Electrochemical characterization shows that the composites exhibit impressive performance, achieving a reversible specific capacity of 1,054.5 mAh g−1 after 100 cycles at 0.5 A g−1, and retaining 734.8 mAh g−1 after 400 cycles at 1 A g−1. Moreover, finite element analysis (FEA) revealed another reason why the yolk-shell structure improves the performance of Si anodes: the presence of cavities promotes ion diffusion processes. This study provides a new synthetic paradigm for preparing Si-C composite materials with yolk shell structure and offers new insights into the improvement mechanism of this structure.

Abstract Image

构建锂离子电池多核壳型硅/碳阳极的创新策略。
蛋黄壳结构为锂离子电池(lib)中硅(Si)阳极的挑战提供了一个有希望的解决方案,特别是在解决充放电循环过程中发生的显著体积变化方面。然而,传统的施工方法往往依赖于牺牲模板和酸或碱蚀刻,这限制了工业适用性。在这项工作中,我们利用可扩展喷雾干燥技术和金属有机框架(MOFs)在室温下原位生长,成功构建了具有多核壳壳结构的硅/碳(Si/C)复合材料。通过控制喷雾干燥参数和MOF的尺寸,我们在不牺牲模板的情况下实现了空腔尺寸和外壳完整性的可控调节,便于大规模制备。电化学表征表明,复合材料表现出令人印象深刻的性能,在0.5 a g-1下循环100次后达到1,054.5 mAh g-1的可逆比容量,在1 a g-1下循环400次后保持734.8 mAh g-1。此外,有限元分析(FEA)揭示了蛋黄壳结构提高硅阳极性能的另一个原因:空腔的存在促进了离子扩散过程。本研究为制备具有卵黄壳结构的Si-C复合材料提供了新的合成范式,并对该结构的改进机理提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
文献相关原料
公司名称
产品信息
阿拉丁
cobalt nitrate hexahydrate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信