Aojie Yuan, Jianhao Du, Yang Zheng, Huan Liu, Haojun Zhang, Honglei Li, Long Chen
{"title":"Construction of 2D CoFe-MOF derived from LDH electrocatalyst for efficient oxygen and urea evolution.","authors":"Aojie Yuan, Jianhao Du, Yang Zheng, Huan Liu, Haojun Zhang, Honglei Li, Long Chen","doi":"10.1016/j.jcis.2025.01.115","DOIUrl":null,"url":null,"abstract":"<p><p>Two-dimensional metal-organic framework (2D MOF) materials have significant development prospects in the technology of urea-assisted water electrolysis for hydrogen production. However, the poor conductivity, low mass permeability, and stability have limited their development in electrocatalysis. Here, CoFe-BDC is synthesized using layered double hydroxides (LDH) as the template. The effect of different ligands of CoFe-MOF on the microstructure and electrocatalytic performance is systematically investigated. Terephthalic acid has the weakest destructive ability and strongest coordination ability due to its high symmetry in spatial structure and its weakest acidity than other ligands, leading to the production of massive active sites. CoFe-BDC has the best electrocatalytic activity (oxygen evolution reaction (OER): η<sub>100</sub> = 258 mV, urea oxidation reaction (UOR): η<sub>100</sub> = 1.34 V, overall water splitting (OWS): E<sub>100</sub> = 1.76 V). CoFe-BDC is observed to undergo a catalytic transformation to FeOOH at a reconstruction voltage of 1.4 V via in situ Fourier transform infrared spectroscopy and Raman spectroscopy. This study provides a new approach of 2D MOFs materials using template method for water electrolysis.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"684 Pt 2","pages":"243-250"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2025.01.115","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional metal-organic framework (2D MOF) materials have significant development prospects in the technology of urea-assisted water electrolysis for hydrogen production. However, the poor conductivity, low mass permeability, and stability have limited their development in electrocatalysis. Here, CoFe-BDC is synthesized using layered double hydroxides (LDH) as the template. The effect of different ligands of CoFe-MOF on the microstructure and electrocatalytic performance is systematically investigated. Terephthalic acid has the weakest destructive ability and strongest coordination ability due to its high symmetry in spatial structure and its weakest acidity than other ligands, leading to the production of massive active sites. CoFe-BDC has the best electrocatalytic activity (oxygen evolution reaction (OER): η100 = 258 mV, urea oxidation reaction (UOR): η100 = 1.34 V, overall water splitting (OWS): E100 = 1.76 V). CoFe-BDC is observed to undergo a catalytic transformation to FeOOH at a reconstruction voltage of 1.4 V via in situ Fourier transform infrared spectroscopy and Raman spectroscopy. This study provides a new approach of 2D MOFs materials using template method for water electrolysis.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies