Assembly-foaming synthesis of hierarchically porous nitrogen-doped carbon supported single-atom iron catalysts for efficient oxygen reduction.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Journal of Colloid and Interface Science Pub Date : 2025-04-15 Epub Date: 2025-01-11 DOI:10.1016/j.jcis.2025.01.076
Zeyu Hu, Cancan Li, Yaqian Lin, Ying Shao, Yan Ai, Feiyan Feng, Wei Li, Zhangxiong Wu
{"title":"Assembly-foaming synthesis of hierarchically porous nitrogen-doped carbon supported single-atom iron catalysts for efficient oxygen reduction.","authors":"Zeyu Hu, Cancan Li, Yaqian Lin, Ying Shao, Yan Ai, Feiyan Feng, Wei Li, Zhangxiong Wu","doi":"10.1016/j.jcis.2025.01.076","DOIUrl":null,"url":null,"abstract":"<p><p>High-performance electrocatalysts are highly concerned in oxygen reduction reaction (ORR) related energy applications. However, facile synthesis of hierarchically porous structures with highly exposed active sites and improved mass transfer is challenging. Herein, we develop a novel assembly-foaming strategy for synthesizing hierarchically porous nitrogen-doped carbon supported single-atom iron catalysts. Incorporation of a Fe<sup>3+</sup>/histidine complex into the block copolymer F127/resol assembly system not only enables an assembly-foaming process forming hierarchical pores, but also promotes the creation of abundant nitrogen-coordinated single-atom Fe (FeN<sub>X</sub>) sites on well-graphitized carbon skeletons. The obtained materials possess interconnected macropores (1.5-11.5 µm), large mesopores (5-30 nm) and rich micropores, high surface areas (534-970 m<sup>2</sup> g<sup>-1</sup>), large pore volumes (0.68-1.04 cm<sup>3</sup> g<sup>-1</sup>) and rich FeN<sub>X</sub> sites. The optimized sample exhibits a superior ORR activity (onset potential 1.03 V and half-wave potential 0.89 V) to the commercial 20 wt% Pt/C catalyst, a high kinetic current density and excellent stability and methanol tolerance.The prominent performance stems from the coeffects of the hierarchical pore structure and the rich accessible FeN<sub>X</sub> sites. The significance of the pore structure is revealed by the positive linear relationship between the double-layer capacitances of the obtained materials and their ORR activities.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"684 Pt 2","pages":"52-63"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2025.01.076","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

High-performance electrocatalysts are highly concerned in oxygen reduction reaction (ORR) related energy applications. However, facile synthesis of hierarchically porous structures with highly exposed active sites and improved mass transfer is challenging. Herein, we develop a novel assembly-foaming strategy for synthesizing hierarchically porous nitrogen-doped carbon supported single-atom iron catalysts. Incorporation of a Fe3+/histidine complex into the block copolymer F127/resol assembly system not only enables an assembly-foaming process forming hierarchical pores, but also promotes the creation of abundant nitrogen-coordinated single-atom Fe (FeNX) sites on well-graphitized carbon skeletons. The obtained materials possess interconnected macropores (1.5-11.5 µm), large mesopores (5-30 nm) and rich micropores, high surface areas (534-970 m2 g-1), large pore volumes (0.68-1.04 cm3 g-1) and rich FeNX sites. The optimized sample exhibits a superior ORR activity (onset potential 1.03 V and half-wave potential 0.89 V) to the commercial 20 wt% Pt/C catalyst, a high kinetic current density and excellent stability and methanol tolerance.The prominent performance stems from the coeffects of the hierarchical pore structure and the rich accessible FeNX sites. The significance of the pore structure is revealed by the positive linear relationship between the double-layer capacitances of the obtained materials and their ORR activities.

分层多孔氮掺杂碳负载单原子铁催化剂的组装发泡合成及其高效氧还原性能。
高性能电催化剂在氧还原反应(ORR)能源应用中备受关注。然而,易于合成具有高度暴露活性位点和改进传质的分层多孔结构是具有挑战性的。在此,我们开发了一种新的组装发泡策略来合成分层多孔氮掺杂碳负载的单原子铁催化剂。在嵌段共聚物F127/溶胶组装体系中加入Fe3+/组氨酸配合物,不仅使组装发泡过程形成分层孔隙,而且还促进了在石墨化良好的碳骨架上产生丰富的氮配位单原子Fe (FeNX)位点。所获得的材料具有大孔(1.5 ~ 11.5µm)、大孔(5 ~ 30 nm)和丰富的微孔、高表面积(534 ~ 970 m2 g-1)、大孔体积(0.68 ~ 1.04 cm3 g-1)和丰富的FeNX位点。与20 wt% Pt/C商用催化剂相比,优化后的样品表现出优异的ORR活性(起始电位1.03 V,半波电位0.89 V),高的动态电流密度,优异的稳定性和甲醇耐受性。这种突出的性能源于分层孔隙结构和丰富的可达FeNX位点的共同作用。所得材料的双层电容与其ORR活性呈正线性关系,揭示了孔隙结构的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信