Versatile and robust transparent polymer film with preprogrammed diffusion and bidirectional irreversible fluorescence for sequential information encryption.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Mingda Yang, Ahmed Olalekan Omoniyi, Feifeng Chen, Jinfang Liu, Wenfei Li, Dongdong Chen, Cunyou Chen, Yang Zhou, Jianfu Zhang
{"title":"Versatile and robust transparent polymer film with preprogrammed diffusion and bidirectional irreversible fluorescence for sequential information encryption.","authors":"Mingda Yang, Ahmed Olalekan Omoniyi, Feifeng Chen, Jinfang Liu, Wenfei Li, Dongdong Chen, Cunyou Chen, Yang Zhou, Jianfu Zhang","doi":"10.1016/j.jcis.2025.01.116","DOIUrl":null,"url":null,"abstract":"<p><p>The materials currently available for information encryption often suffer from low transparency, poor mechanical strength, and a reliance on single decryption conditions, which limits their security and hence application potential. To address these challenges, we developed a transparent, mechanically robust polymer film inspired by the camouflage and communication strategies of the glass squid. In this film, 2,5-dihydroxyterephthalic acid (DHTA) and zinc acetate dihydrate are integrated into a crosslinked polyvinyl alcohol-glutaraldehyde (PVA-GA) matrix to achieve bidirectional irreversible fluorescence and sequential decryption. The material exhibits high transparency (>89 %) and impressive tensile strength (60 MPa), and its fluorescence responses can be tuned with UV light, alkaline conditions, and high-temperature ethanol solutions. Based on preprogrammed diffusion rates, customizable time-based decryption can be achieved with the film, advancing multilevel encryption techniques. These findings demonstrate that this film represents a promising platform for secure information encryption and anticounterfeiting applications.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"685 ","pages":"73-86"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2025.01.116","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The materials currently available for information encryption often suffer from low transparency, poor mechanical strength, and a reliance on single decryption conditions, which limits their security and hence application potential. To address these challenges, we developed a transparent, mechanically robust polymer film inspired by the camouflage and communication strategies of the glass squid. In this film, 2,5-dihydroxyterephthalic acid (DHTA) and zinc acetate dihydrate are integrated into a crosslinked polyvinyl alcohol-glutaraldehyde (PVA-GA) matrix to achieve bidirectional irreversible fluorescence and sequential decryption. The material exhibits high transparency (>89 %) and impressive tensile strength (60 MPa), and its fluorescence responses can be tuned with UV light, alkaline conditions, and high-temperature ethanol solutions. Based on preprogrammed diffusion rates, customizable time-based decryption can be achieved with the film, advancing multilevel encryption techniques. These findings demonstrate that this film represents a promising platform for secure information encryption and anticounterfeiting applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信