{"title":"Automating egg damage detection for improved quality control in the food industry using deep learning","authors":"Talha Alperen Cengel, Bunyamin Gencturk, Elham Tahsin Yasin, Muslume Beyza Yildiz, Ilkay Cinar, Murat Koklu","doi":"10.1111/1750-3841.17553","DOIUrl":null,"url":null,"abstract":"<p>The detection and classification of damage to eggs within the egg industry are of paramount importance for the production of healthy eggs. This study focuses on the automatic identification of cracks and surface damage in chicken eggs using deep learning algorithms. The goal is to enhance egg quality control in the food industry by accurately identifying eggs with physical damage, such as cracks, fractures, or other surface defects, which could compromise their quality. A total of 794 egg images were used in the study, comprising two different classes: damaged and not damaged (intact) eggs. Four different deep learning models based on convolutional neural networks were employed: GoogLeNet, Visual Geometry Group (VGG)-19, MobileNet-v2, and residual network (ResNet)-50. GoogLeNet achieved a classification accuracy of 98.73%, VGG-19 achieved 97.45%, MobileNet-v2 achieved 97.47%, and ResNet-50 achieved 96.84%. According to the results, the GoogLeNet model performed the damage detection with the highest accuracy rate (98.73%). This study encompasses artificial intelligence and deep learning techniques for the automatic detection of egg damage. The early detection of egg damage and accurate interventions highlights the significant importance of using these technologies in the food industry. This approach provides producers with the ability to detect damaged eggs more quickly and accurately, thereby minimizing product losses through timely intervention. Additionally, the use of these technologies offers a more efficient means of classifying and identifying damaged eggs compared to traditional methods.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":"90 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1750-3841.17553","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The detection and classification of damage to eggs within the egg industry are of paramount importance for the production of healthy eggs. This study focuses on the automatic identification of cracks and surface damage in chicken eggs using deep learning algorithms. The goal is to enhance egg quality control in the food industry by accurately identifying eggs with physical damage, such as cracks, fractures, or other surface defects, which could compromise their quality. A total of 794 egg images were used in the study, comprising two different classes: damaged and not damaged (intact) eggs. Four different deep learning models based on convolutional neural networks were employed: GoogLeNet, Visual Geometry Group (VGG)-19, MobileNet-v2, and residual network (ResNet)-50. GoogLeNet achieved a classification accuracy of 98.73%, VGG-19 achieved 97.45%, MobileNet-v2 achieved 97.47%, and ResNet-50 achieved 96.84%. According to the results, the GoogLeNet model performed the damage detection with the highest accuracy rate (98.73%). This study encompasses artificial intelligence and deep learning techniques for the automatic detection of egg damage. The early detection of egg damage and accurate interventions highlights the significant importance of using these technologies in the food industry. This approach provides producers with the ability to detect damaged eggs more quickly and accurately, thereby minimizing product losses through timely intervention. Additionally, the use of these technologies offers a more efficient means of classifying and identifying damaged eggs compared to traditional methods.
期刊介绍:
The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science.
The range of topics covered in the journal include:
-Concise Reviews and Hypotheses in Food Science
-New Horizons in Food Research
-Integrated Food Science
-Food Chemistry
-Food Engineering, Materials Science, and Nanotechnology
-Food Microbiology and Safety
-Sensory and Consumer Sciences
-Health, Nutrition, and Food
-Toxicology and Chemical Food Safety
The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.