{"title":"The PKM2 activator TEPP-46 suppresses cellular senescence in hydrogen peroxide-induced proximal tubular cells and kidney fibrosis in CD-1<sup>db/db</sup> mice.","authors":"Shin-Ichiro Ishihara, Md Imrul Kayes, Hirofumi Makino, Hiroaki Matsuda, Asako Kumagai, Yoshihiro Hayashi, Sara Amelia Ferdaus, Emi Kawakita, Daisuke Koya, Keizo Kanasaki","doi":"10.1111/jdi.14397","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim/introduction: </strong>Senescence is a key driver of age-related kidney dysfunction, including diabetic kidney disease. Oxidative stress activates cellular senescence, induces abnormal glycolysis, and is associated with pyruvate kinase muscle isoform 2 (PKM2) dysfunction; however, the mechanisms linking PK activation to cellular senescence have not been elucidated. We hypothesized that PKM2 activation by TEPP-46 could suppress oxidative stress-induced renal tubular cell injury and cellular senescence.</p><p><strong>Materials and methods: </strong>To investigate the effects of PKM2 activation on oxidative stress-induced cellular senescence, we conducted β-galactosidase staining and western blot analysis on human primary renal tubular cells (pRPTECs) treated with hydrogen peroxide with or without TEPP-46. IL-6 levels and glycolytic flux were measured. Cell viability and apoptosis were assessed via the MTS assay and caspase 3 cleavage. For in vivo experiments, we utilized CD-1<sup>db/db</sup> mice, a fibrotic type 2 diabetes model, which exhibit kidney fibrosis. After 4 weeks of TEPP-46 intervention, kidney fibrosis and the expression of senescence markers were analyzed.</p><p><strong>Results: </strong>In pRPTECs, hydrogen peroxide increased the number of β-galactosidase-positive cells, the expression of senescence markers (p16, p21, p53), and p38 phosphorylation; co-incubation with TEPP-46 suppressed these alterations. Hydrogen peroxide reduced cell viability, induced apoptosis, mesenchymal alterations, and increased lactate production and IL-6 secretion; co-incubation with TEPP-46 or a p38 inhibitor mitigated these effects. In CD-1<sup>db/db</sup> mice, TEPP-46 intervention suppressed apoptosis, fibrosis, and tended to reduce the levels of senescence-associated molecules in the kidney.</p><p><strong>Conclusions: </strong>PKM2 activation could be a molecular target for protection against senescence-associated organ damage, including diabetic kidney disease.</p>","PeriodicalId":190,"journal":{"name":"Journal of Diabetes Investigation","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Diabetes Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jdi.14397","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aim/introduction: Senescence is a key driver of age-related kidney dysfunction, including diabetic kidney disease. Oxidative stress activates cellular senescence, induces abnormal glycolysis, and is associated with pyruvate kinase muscle isoform 2 (PKM2) dysfunction; however, the mechanisms linking PK activation to cellular senescence have not been elucidated. We hypothesized that PKM2 activation by TEPP-46 could suppress oxidative stress-induced renal tubular cell injury and cellular senescence.
Materials and methods: To investigate the effects of PKM2 activation on oxidative stress-induced cellular senescence, we conducted β-galactosidase staining and western blot analysis on human primary renal tubular cells (pRPTECs) treated with hydrogen peroxide with or without TEPP-46. IL-6 levels and glycolytic flux were measured. Cell viability and apoptosis were assessed via the MTS assay and caspase 3 cleavage. For in vivo experiments, we utilized CD-1db/db mice, a fibrotic type 2 diabetes model, which exhibit kidney fibrosis. After 4 weeks of TEPP-46 intervention, kidney fibrosis and the expression of senescence markers were analyzed.
Results: In pRPTECs, hydrogen peroxide increased the number of β-galactosidase-positive cells, the expression of senescence markers (p16, p21, p53), and p38 phosphorylation; co-incubation with TEPP-46 suppressed these alterations. Hydrogen peroxide reduced cell viability, induced apoptosis, mesenchymal alterations, and increased lactate production and IL-6 secretion; co-incubation with TEPP-46 or a p38 inhibitor mitigated these effects. In CD-1db/db mice, TEPP-46 intervention suppressed apoptosis, fibrosis, and tended to reduce the levels of senescence-associated molecules in the kidney.
Conclusions: PKM2 activation could be a molecular target for protection against senescence-associated organ damage, including diabetic kidney disease.
期刊介绍:
Journal of Diabetes Investigation is your core diabetes journal from Asia; the official journal of the Asian Association for the Study of Diabetes (AASD). The journal publishes original research, country reports, commentaries, reviews, mini-reviews, case reports, letters, as well as editorials and news. Embracing clinical and experimental research in diabetes and related areas, the Journal of Diabetes Investigation includes aspects of prevention, treatment, as well as molecular aspects and pathophysiology. Translational research focused on the exchange of ideas between clinicians and researchers is also welcome. Journal of Diabetes Investigation is indexed by Science Citation Index Expanded (SCIE).