{"title":"Pectin/gelatin-based bionanocomposite containing modified graphene quantum dots and carnauba wax as functional fillers for food packaging applications","authors":"Negin Hejabi, Ashraf Fakhari, Mehri Haeili, Zahra Ghasempour","doi":"10.1111/1750-3841.17466","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n \n <p>Alternatives to nonbiodegradable synthetic plastics for food packaging include films made from biopolymers that are nontoxic and environment-friendly. In this study, carnauba wax (CW) and nitrogen-doped graphene quantum dots (NG) as functional additives were utilized in the production of pectin/gelatin (PG) film. NG was synthesized through the microwave method, using acetic acid as the carbon source, giving size, and zeta potential of 1.635 nm and +0.647 mV, respectively. NG (0%–10%) and CW (0%–10%) were investigated for nanocomposite film preparation using central composite design. The lowest water vapor permeability of film samples was 1.74 × 10<sup>−10</sup> g mm/h m<sup>2</sup> kPa, which was obtained at 8.5% CW and 6% NG. The highest solubility rate (57%) was observed in the PG film with 10% NG. The incorporation of NG significantly amplified light absorbance at 280 nm. The antioxidant properties improved as NG content increased from 1.5% to 10%. Optimum condition for the fabrication of film sample was obtained at 8.5% NG and 8.5% CW. Adding NG led to a substantial enhancement in the tensile strength (up to 68.97%) and elongation at break (up to 40.20%). PG film with CW and NG reduced the viable cell count of <i>Staphylococcus aureus</i> and <i>Klebsiella pneumoniae</i> by 4- and 1.75-fold, respectively. The produced composite film combined with NG and CW can serve as suitable novel active packaging components for items prone to oxidation and bacterial spoilage to enhance their quality and longevity.</p>\n </section>\n </div>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":"90 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1750-3841.17466","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alternatives to nonbiodegradable synthetic plastics for food packaging include films made from biopolymers that are nontoxic and environment-friendly. In this study, carnauba wax (CW) and nitrogen-doped graphene quantum dots (NG) as functional additives were utilized in the production of pectin/gelatin (PG) film. NG was synthesized through the microwave method, using acetic acid as the carbon source, giving size, and zeta potential of 1.635 nm and +0.647 mV, respectively. NG (0%–10%) and CW (0%–10%) were investigated for nanocomposite film preparation using central composite design. The lowest water vapor permeability of film samples was 1.74 × 10−10 g mm/h m2 kPa, which was obtained at 8.5% CW and 6% NG. The highest solubility rate (57%) was observed in the PG film with 10% NG. The incorporation of NG significantly amplified light absorbance at 280 nm. The antioxidant properties improved as NG content increased from 1.5% to 10%. Optimum condition for the fabrication of film sample was obtained at 8.5% NG and 8.5% CW. Adding NG led to a substantial enhancement in the tensile strength (up to 68.97%) and elongation at break (up to 40.20%). PG film with CW and NG reduced the viable cell count of Staphylococcus aureus and Klebsiella pneumoniae by 4- and 1.75-fold, respectively. The produced composite film combined with NG and CW can serve as suitable novel active packaging components for items prone to oxidation and bacterial spoilage to enhance their quality and longevity.
期刊介绍:
The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science.
The range of topics covered in the journal include:
-Concise Reviews and Hypotheses in Food Science
-New Horizons in Food Research
-Integrated Food Science
-Food Chemistry
-Food Engineering, Materials Science, and Nanotechnology
-Food Microbiology and Safety
-Sensory and Consumer Sciences
-Health, Nutrition, and Food
-Toxicology and Chemical Food Safety
The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.