Jasper H A Schuurmans, Stefan D A Zondag, Arnab Chaudhuri, Miguel Claros, John van der Schaaf, Timothy Noël
{"title":"Interaction of light with gas-liquid interfaces: influence on photon absorption in continuous-flow photoreactors.","authors":"Jasper H A Schuurmans, Stefan D A Zondag, Arnab Chaudhuri, Miguel Claros, John van der Schaaf, Timothy Noël","doi":"10.1039/d4re00540f","DOIUrl":null,"url":null,"abstract":"<p><p>Light interacts with gas bubbles in various ways, potentially leading to photon losses in gas-liquid photochemical applications. Given that light is a valuable 'reagent', understanding these losses is crucial for optimizing reactor efficiency. In this study, we address the challenge of quantifying these interactions by implementing a method that separately determines the photon flux and utilizes actinometric experiments to determine the effective optical path length, a key descriptor of photon absorption. The results reveal the unexpected impact of gas phase introduction in continuous-flow photoreactors. Notably, photon absorption, and consequently the throughput of a photoreactor, can be increased by the introduction of a gas phase. This enhancement arises from the reflection and refraction effects of gas bubbles, which can intensify light intensity in the liquid volume and thereby offset any loss in residence time. The photon absorption losses that were observed were associated with large bubbles and were less significant than anticipated. In contrast, the introduction of small bubbles was found to increase photon absorption, suggesting it is a potential strategy to optimize photoreactor performance.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726180/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4re00540f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Light interacts with gas bubbles in various ways, potentially leading to photon losses in gas-liquid photochemical applications. Given that light is a valuable 'reagent', understanding these losses is crucial for optimizing reactor efficiency. In this study, we address the challenge of quantifying these interactions by implementing a method that separately determines the photon flux and utilizes actinometric experiments to determine the effective optical path length, a key descriptor of photon absorption. The results reveal the unexpected impact of gas phase introduction in continuous-flow photoreactors. Notably, photon absorption, and consequently the throughput of a photoreactor, can be increased by the introduction of a gas phase. This enhancement arises from the reflection and refraction effects of gas bubbles, which can intensify light intensity in the liquid volume and thereby offset any loss in residence time. The photon absorption losses that were observed were associated with large bubbles and were less significant than anticipated. In contrast, the introduction of small bubbles was found to increase photon absorption, suggesting it is a potential strategy to optimize photoreactor performance.
期刊介绍:
Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society.
From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.