Weronika Trun, Amaury Fernández-Montalván, Yong-Jiang Cao, Bernard Haendler, Dieter Zopf
{"title":"Inhibition of EphB4 Receptor Signaling by Ephrin-B2-Competitive and Non-Competitive DARPins Prevents Angiogenesis.","authors":"Weronika Trun, Amaury Fernández-Montalván, Yong-Jiang Cao, Bernard Haendler, Dieter Zopf","doi":"10.1021/acs.biochem.4c00431","DOIUrl":null,"url":null,"abstract":"<p><p>The receptor tyrosine kinase EphB4 is involved in tumor angiogenesis, proliferation, and metastasis. Designed ankyrin repeat proteins (DARPins) binding to the EphB4 extracellular domain were identified from a combinatorial library using phage display. Surface plasmon resonance (SPR) allowed us to distinguish between DARPins that either compete with the EphB4 ligand ephrin-B2 for binding to a common site or target a different epitope. The identified DARPins all prevent ligand-induced EphB4 phosphorylation and impair tube formation by endothelial cells in vitro. The competitive DARPin AB1 was additionally shown to inhibit vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF)-induced angiogenesis in vivo. In summary, we have isolated DARPins that exert antiangiogenic effects by specifically binding to EphB4 and may potentially lead to new cancer therapeutics.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":"620-633"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00431","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The receptor tyrosine kinase EphB4 is involved in tumor angiogenesis, proliferation, and metastasis. Designed ankyrin repeat proteins (DARPins) binding to the EphB4 extracellular domain were identified from a combinatorial library using phage display. Surface plasmon resonance (SPR) allowed us to distinguish between DARPins that either compete with the EphB4 ligand ephrin-B2 for binding to a common site or target a different epitope. The identified DARPins all prevent ligand-induced EphB4 phosphorylation and impair tube formation by endothelial cells in vitro. The competitive DARPin AB1 was additionally shown to inhibit vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF)-induced angiogenesis in vivo. In summary, we have isolated DARPins that exert antiangiogenic effects by specifically binding to EphB4 and may potentially lead to new cancer therapeutics.
期刊介绍:
Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.