Kashala Fabrice Kapiamba, Steven Achterberg, Ta-Chun Lin, Philip D Whitefield, Yue-Wern Huang, Yang Wang
{"title":"Characterizing the Transient Emission of Particles and Gases from a Single Puff of Electronic Cigarette Smoke.","authors":"Kashala Fabrice Kapiamba, Steven Achterberg, Ta-Chun Lin, Philip D Whitefield, Yue-Wern Huang, Yang Wang","doi":"10.1021/acs.chemrestox.4c00420","DOIUrl":null,"url":null,"abstract":"<p><p>This study employed high-time-resolution systems to examine the transient properties of aerosols and gases emitted from electronic cigarette (EC) puffs. Using a fast aerosol sizer, we measured particle size distributions (PSDs) across various EC brands (JUUL, VUSE, VOOPOO), revealing sizes ranging from 5 to 1000 nm at concentrations of 10<sup>7</sup> to 10<sup>10</sup> cm<sup>-3</sup>. Most aerosols were found to be in the ultrafine range (below 100 nm), with JUUL-, VUSE-, and VOOPOO-producing aerosols with geometric mean sizes of 19.9, 47.3, and 29.4 nm, respectively. Applying the International Commission on Radiological Protection (ICRP) deposition model and assuming no further evolution of aerosols in the respiratory system, we estimated particle deposition in different respiratory regions: 45-60% in the alveolar region, 10-25% in the tracheobronchial region, and 20-35% in the extrathoracic region. The highest single-puff deposition was observed with the VOOPOO device at 60 W, depositing 180.1 ± 7.6 μg in the alveolar region. The gas emissions (CO<sub>2</sub>, NO<i><sub>x</sub></i>, CO, and total hydrocarbons) were measured at different power settings of the VOOPOO EC. Single-puff NO<i><sub>x</sub></i> and CO levels exceeded the permissible exposure limits of the Occupational Safety and Health Administration, indicating potential acute exposure risks. Higher power settings were correlated with increased gas mixing ratios, suggesting more e-liquid vaporization and possible chemical transformations at higher temperatures. These findings demonstrated significant health risks associated with ultrafine particles from high-power ECs and emphasize the need for advanced measurements to accurately assess their physicochemical properties and potential health implications.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"270-280"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.chemrestox.4c00420","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study employed high-time-resolution systems to examine the transient properties of aerosols and gases emitted from electronic cigarette (EC) puffs. Using a fast aerosol sizer, we measured particle size distributions (PSDs) across various EC brands (JUUL, VUSE, VOOPOO), revealing sizes ranging from 5 to 1000 nm at concentrations of 107 to 1010 cm-3. Most aerosols were found to be in the ultrafine range (below 100 nm), with JUUL-, VUSE-, and VOOPOO-producing aerosols with geometric mean sizes of 19.9, 47.3, and 29.4 nm, respectively. Applying the International Commission on Radiological Protection (ICRP) deposition model and assuming no further evolution of aerosols in the respiratory system, we estimated particle deposition in different respiratory regions: 45-60% in the alveolar region, 10-25% in the tracheobronchial region, and 20-35% in the extrathoracic region. The highest single-puff deposition was observed with the VOOPOO device at 60 W, depositing 180.1 ± 7.6 μg in the alveolar region. The gas emissions (CO2, NOx, CO, and total hydrocarbons) were measured at different power settings of the VOOPOO EC. Single-puff NOx and CO levels exceeded the permissible exposure limits of the Occupational Safety and Health Administration, indicating potential acute exposure risks. Higher power settings were correlated with increased gas mixing ratios, suggesting more e-liquid vaporization and possible chemical transformations at higher temperatures. These findings demonstrated significant health risks associated with ultrafine particles from high-power ECs and emphasize the need for advanced measurements to accurately assess their physicochemical properties and potential health implications.
期刊介绍:
Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.