Balancing pH and Pressure Allows Boosting Voltage and Power Density for a H2-I2 Redox Flow Battery.

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
ACS Applied Energy Materials Pub Date : 2024-12-24 eCollection Date: 2025-01-13 DOI:10.1021/acsaem.4c03032
Kaustub Singh, Ameya Bondre, Kostadin V Petrov, David A Vermaas
{"title":"Balancing pH and Pressure Allows Boosting Voltage and Power Density for a H<sub>2</sub>-I<sub>2</sub> Redox Flow Battery.","authors":"Kaustub Singh, Ameya Bondre, Kostadin V Petrov, David A Vermaas","doi":"10.1021/acsaem.4c03032","DOIUrl":null,"url":null,"abstract":"<p><p>The decoupled power and energy output of a redox flow battery (RFB) offers a key advantage in long-duration energy storage, crucial for a successful energy transition. Iodide/iodine and hydrogen/water, owing to their fast reaction kinetics, benign nature, and high solubility, provide promising battery chemistry. However, H<sub>2</sub>-I<sub>2</sub> RFBs suffer from low open circuit potentials, iodine crossover, and their multiphase nature. We demonstrate a H<sub>2</sub>-I<sub>2</sub> operation with a combined neutral-pH catholyte (I<sub>3</sub> <sup>-</sup>/I<sup>-</sup>) and an alkaline anolyte (KOH), producing an open circuit cell voltage of 1.28 V. Additionally, we incorporate a pressure-balanced gas diffusion electrode (GDE) to mitigate mass transport limitations at the anode. These improvements result in a maximum power density of 230 W/m<sup>2</sup> when allowing a mild breakthrough of H<sub>2</sub> through the GDE. While minimal crossover occurs, side reactions of permeating active species were found reversible, enabling long-term operation. Future work should address the stability of the GDE and optimization of the electrolyte thickness and concentration to fully leverage the potential unlocked by balancing the pressure and pH in the H<sub>2</sub>-I<sub>2</sub> RFB.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 1","pages":"631-639"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733921/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsaem.4c03032","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/13 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The decoupled power and energy output of a redox flow battery (RFB) offers a key advantage in long-duration energy storage, crucial for a successful energy transition. Iodide/iodine and hydrogen/water, owing to their fast reaction kinetics, benign nature, and high solubility, provide promising battery chemistry. However, H2-I2 RFBs suffer from low open circuit potentials, iodine crossover, and their multiphase nature. We demonstrate a H2-I2 operation with a combined neutral-pH catholyte (I3 -/I-) and an alkaline anolyte (KOH), producing an open circuit cell voltage of 1.28 V. Additionally, we incorporate a pressure-balanced gas diffusion electrode (GDE) to mitigate mass transport limitations at the anode. These improvements result in a maximum power density of 230 W/m2 when allowing a mild breakthrough of H2 through the GDE. While minimal crossover occurs, side reactions of permeating active species were found reversible, enabling long-term operation. Future work should address the stability of the GDE and optimization of the electrolyte thickness and concentration to fully leverage the potential unlocked by balancing the pressure and pH in the H2-I2 RFB.

平衡pH值和压力允许提高H2-I2氧化还原液流电池的电压和功率密度。
氧化还原液流电池(RFB)的解耦功率和能量输出在长时间能量存储方面具有关键优势,这对于成功的能量转换至关重要。碘化物/碘和氢/水由于其快速反应动力学、良性性质和高溶解度,在电池化学领域具有广阔的应用前景。然而,H2-I2 rfb存在开路电位低、碘交叉和多相特性等问题。我们演示了一种H2-I2操作,结合了中性ph阴极电解质(I3 -/I-)和碱性阳极电解质(KOH),产生了1.28 V的开路电池电压。此外,我们还采用了压力平衡气体扩散电极(GDE)来减轻阳极的质量传输限制。当允许H2通过GDE的轻微突破时,这些改进导致最大功率密度达到230 W/m2。虽然发生了最小的交叉,但发现渗透活性物质的副反应是可逆的,可以长期使用。未来的工作应该解决GDE的稳定性以及电解质厚度和浓度的优化,以充分利用平衡H2-I2 RFB中的压力和pH所释放的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信