Serotonergic Mechanisms in Proteinoid-Based Protocells.

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Panagiotis Mougkogiannis, Andrew Adamatzky
{"title":"Serotonergic Mechanisms in Proteinoid-Based Protocells.","authors":"Panagiotis Mougkogiannis, Andrew Adamatzky","doi":"10.1021/acschemneuro.4c00801","DOIUrl":null,"url":null,"abstract":"<p><p>This study examines the effects of incorporating serotonin (5-HT) into proteinoid microspheres. It looks at the microspheres' structure and electrochemical properties. Proteinoid-serotonin assemblies have better symmetry and membrane organization than pristine proteinoids. Cyclic voltammetry shows a big boost in electron transfer. This is proven by a smaller peak separation and higher electrochemical efficiency. SEM imaging shows a distinct core-shell structure and uniform density. This suggests ordered molecular assembly. These findings show that serotonin changes proteinoid self-assembly. It creates structured systems with better electron transfer pathways. The serotonin-modified proto-neurons show new properties. They give insights into early cellular organization and signaling. This helps us understand prebiotic information processing systems.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00801","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the effects of incorporating serotonin (5-HT) into proteinoid microspheres. It looks at the microspheres' structure and electrochemical properties. Proteinoid-serotonin assemblies have better symmetry and membrane organization than pristine proteinoids. Cyclic voltammetry shows a big boost in electron transfer. This is proven by a smaller peak separation and higher electrochemical efficiency. SEM imaging shows a distinct core-shell structure and uniform density. This suggests ordered molecular assembly. These findings show that serotonin changes proteinoid self-assembly. It creates structured systems with better electron transfer pathways. The serotonin-modified proto-neurons show new properties. They give insights into early cellular organization and signaling. This helps us understand prebiotic information processing systems.

基于蛋白的原始细胞中的血清素能机制。
本研究考察了将5-羟色胺(5-HT)纳入类蛋白微球的效果。它着眼于微球的结构和电化学性能。类蛋白-血清素组合比原始类蛋白具有更好的对称性和膜组织。循环伏安法显示电子转移有很大的提高。更小的峰分离和更高的电化学效率证明了这一点。扫描电镜成像显示其核壳结构清晰,密度均匀。这表明分子组装是有序的。这些发现表明血清素改变了类蛋白的自组装。它创造了具有更好的电子转移途径的结构化系统。5 -羟色胺修饰的原神经元显示出新的特性。它们提供了对早期细胞组织和信号传导的见解。这有助于我们理解益生元信息处理系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信