Reactivity of Olanzapine and Tricyclic Antidepressants on the Protective Effects of Trolox on Lipid Peroxidation Evaluated Using Fluorescence Anisotropy, Electron Paramagnetic Resonance Spectrometry, and Thermal Analysis.
{"title":"Reactivity of Olanzapine and Tricyclic Antidepressants on the Protective Effects of Trolox on Lipid Peroxidation Evaluated Using Fluorescence Anisotropy, Electron Paramagnetic Resonance Spectrometry, and Thermal Analysis.","authors":"Yusuke Horizumi, Reo Tanada, Yuya Kurosawa, Miwa Takatsuka, Tomohiro Tsuchida, Satoru Goto","doi":"10.1021/acschemneuro.4c00702","DOIUrl":null,"url":null,"abstract":"<p><p>Multiacting receptor-targeting antipsychotics and tricyclic antidepressants stimulate various neurotransmitter receptors despite the different targets of postsynaptic receptors and presynaptic reuptake transporters. Their auxiliary and adverse effects may be caused by multiple targets or the modification of the neuronal membrane. To evaluate the membrane responses to olanzapine, imipramine, desipramine, amitriptyline, lidocaine, and dibucaine, we examined the inhibition of lipid peroxidation in egg yolk phosphatidylcholine liposomes. By contrast, their effects on membrane fluidity were measured as the suppressive contributions of the inhibitory activity of Trolox on lipid oxidation. These drugs inhibit lipid peroxidation and exclude harmful reactive oxygen species and the protective effect of Trolox. The fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene in saturated phospholipid liposome-containing drugs suggested that olanzapine, imipramine, and dibucaine enhanced membrane fluidity. The radical scavenging activity of 2,2-diphenylpicrylhidrazyl and galvinoxyl radicals was determined using electron paramagnetic resonance experiments, and their molecular flexibility was determined using thermograms for differential scanning calorimetry. Multiple regression analyses of the linear free energy relationship approach and comparative investigations revealed that the membranous fluidity of the liposomes, independent of the radical scavenging activity of the drugs, induced the inhibitory activity on lipid peroxidation. We discussed how these drugs act on nervous membranes and aimed to identify the relationship between uncertified functions and membranous fluidity.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00702","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Multiacting receptor-targeting antipsychotics and tricyclic antidepressants stimulate various neurotransmitter receptors despite the different targets of postsynaptic receptors and presynaptic reuptake transporters. Their auxiliary and adverse effects may be caused by multiple targets or the modification of the neuronal membrane. To evaluate the membrane responses to olanzapine, imipramine, desipramine, amitriptyline, lidocaine, and dibucaine, we examined the inhibition of lipid peroxidation in egg yolk phosphatidylcholine liposomes. By contrast, their effects on membrane fluidity were measured as the suppressive contributions of the inhibitory activity of Trolox on lipid oxidation. These drugs inhibit lipid peroxidation and exclude harmful reactive oxygen species and the protective effect of Trolox. The fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene in saturated phospholipid liposome-containing drugs suggested that olanzapine, imipramine, and dibucaine enhanced membrane fluidity. The radical scavenging activity of 2,2-diphenylpicrylhidrazyl and galvinoxyl radicals was determined using electron paramagnetic resonance experiments, and their molecular flexibility was determined using thermograms for differential scanning calorimetry. Multiple regression analyses of the linear free energy relationship approach and comparative investigations revealed that the membranous fluidity of the liposomes, independent of the radical scavenging activity of the drugs, induced the inhibitory activity on lipid peroxidation. We discussed how these drugs act on nervous membranes and aimed to identify the relationship between uncertified functions and membranous fluidity.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research