Hinokinin Decreases Methamphetamine-Induced Hyperlocomotion via the Regulatory Effects on Dopamine Levels.

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
ACS Chemical Neuroscience Pub Date : 2025-02-05 Epub Date: 2025-01-21 DOI:10.1021/acschemneuro.4c00592
Byoung Mo Choi, Sun Mi Gu, Abdulaziz Jabborov, Min-Seok Yang, Sang Won Yeon, Chun-Woong Park, Mi Kyeong Lee, Jaesuk Yun
{"title":"Hinokinin Decreases Methamphetamine-Induced Hyperlocomotion via the Regulatory Effects on Dopamine Levels.","authors":"Byoung Mo Choi, Sun Mi Gu, Abdulaziz Jabborov, Min-Seok Yang, Sang Won Yeon, Chun-Woong Park, Mi Kyeong Lee, Jaesuk Yun","doi":"10.1021/acschemneuro.4c00592","DOIUrl":null,"url":null,"abstract":"<p><p>The global abuse of stimulant methamphetamine (METH) imposes a significant social burden. Despite this, effective therapeutic interventions for mitigating the harmful effects associated with METH-induced central nervous system (CNS) stimulation remain elusive. <i>Chamaecyparis obtusa</i> (hinoki), containing hinokinin as its active constituent, has been identified to exhibit CNS depressant properties. Here, we explored the potential of the hinoki extract and hinokinin in modulating METH-induced hyperlocomotion through the regulation of dopaminergic neuronal activity. We discovered that pretreatment with hinokinin significantly attenuates METH-induced locomotor activity, indicative of reduced CNS stimulation. Furthermore, treatment with hinokinin was observed to inhibit the METH-induced elevation in dopamine levels and the concomitant decrease in dopamine transporter (DAT) function within striatal brain slices of mice. In silico analysis coupled with pull-down assays and the dose-response curve substantiated the direct binding of hinokinin to DAT. We propose that hinokinin mitigates METH-induced hyperlocomotion via the inhibition of dopaminergic neurotransmission, with allosteric modulation of DAT playing a critical role in this regulatory mechanism. Collectively, our research suggests the potential of hinokinin to mitigate dopamine-mediated central nervous system excitation.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":"393-404"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00592","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The global abuse of stimulant methamphetamine (METH) imposes a significant social burden. Despite this, effective therapeutic interventions for mitigating the harmful effects associated with METH-induced central nervous system (CNS) stimulation remain elusive. Chamaecyparis obtusa (hinoki), containing hinokinin as its active constituent, has been identified to exhibit CNS depressant properties. Here, we explored the potential of the hinoki extract and hinokinin in modulating METH-induced hyperlocomotion through the regulation of dopaminergic neuronal activity. We discovered that pretreatment with hinokinin significantly attenuates METH-induced locomotor activity, indicative of reduced CNS stimulation. Furthermore, treatment with hinokinin was observed to inhibit the METH-induced elevation in dopamine levels and the concomitant decrease in dopamine transporter (DAT) function within striatal brain slices of mice. In silico analysis coupled with pull-down assays and the dose-response curve substantiated the direct binding of hinokinin to DAT. We propose that hinokinin mitigates METH-induced hyperlocomotion via the inhibition of dopaminergic neurotransmission, with allosteric modulation of DAT playing a critical role in this regulatory mechanism. Collectively, our research suggests the potential of hinokinin to mitigate dopamine-mediated central nervous system excitation.

Hinokinin通过对多巴胺水平的调节作用减少甲基苯丙胺诱导的过度运动。
兴奋剂甲基苯丙胺(冰毒)的全球滥用造成了重大的社会负担。尽管如此,有效的治疗干预措施,以减轻与甲基苯丙胺诱导的中枢神经系统(CNS)刺激相关的有害影响仍然难以捉摸。研究发现,以野栗素为活性成分的野栗素对中枢神经系统具有抑制作用。在这里,我们探索了桧木提取物和桧木苷通过调节多巴胺能神经元活动来调节甲基安非他命诱导的过度运动的潜力。我们发现,用小茴香苷预处理能显著减弱甲基甲醚诱导的运动活动,表明中枢神经系统刺激减少。此外,在小鼠纹状体脑切片中观察到,用牛角苷处理可以抑制甲基苯丙胺诱导的多巴胺水平升高和伴随的多巴胺转运蛋白(DAT)功能的降低。硅分析结合下拉试验和剂量-反应曲线证实了小鹿激酶与DAT的直接结合。我们认为,小野蓟素通过抑制多巴胺能神经传递来减轻冰毒诱导的过度运动,而DAT的变构调节在这一调节机制中起着关键作用。总的来说,我们的研究表明,小野蓟素有可能减轻多巴胺介导的中枢神经系统兴奋。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信