Francisco Bersetche, Francisco Fuica, Enrique Otárola, Daniel Quero
{"title":"Fractional, Semilinear, and Sparse Optimal Control: A Priori Error Bounds","authors":"Francisco Bersetche, Francisco Fuica, Enrique Otárola, Daniel Quero","doi":"10.1007/s00245-024-10200-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we use the integral definition of the fractional Laplace operator and study a sparse optimal control problem involving a fractional, semilinear, and elliptic partial differential equation as state equation; control constraints are also considered. We establish the existence of optimal solutions and first and second order optimality conditions. We also analyze regularity properties for optimal variables. We propose and analyze two finite element strategies of discretization: a fully discrete scheme, where the control variable is discretized with piecewise constant functions, and a semidiscrete scheme, where the control variable is not discretized. For both discretization schemes, we analyze convergence properties and a priori error bounds.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"91 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-024-10200-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we use the integral definition of the fractional Laplace operator and study a sparse optimal control problem involving a fractional, semilinear, and elliptic partial differential equation as state equation; control constraints are also considered. We establish the existence of optimal solutions and first and second order optimality conditions. We also analyze regularity properties for optimal variables. We propose and analyze two finite element strategies of discretization: a fully discrete scheme, where the control variable is discretized with piecewise constant functions, and a semidiscrete scheme, where the control variable is not discretized. For both discretization schemes, we analyze convergence properties and a priori error bounds.
期刊介绍:
The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.