A grain boundary model of garnet growth

IF 3.5 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Frank S. Spear
{"title":"A grain boundary model of garnet growth","authors":"Frank S. Spear","doi":"10.1007/s00410-025-02201-z","DOIUrl":null,"url":null,"abstract":"<div><p>Numerical models for the growth of garnet are presented to evaluate the relative significance of reaction-limited growth and diffusion-limited growth following garnet nucleation after significant overstepping of the equilibrium garnet-in reaction. Reactions are only permitted among phases that are adjacent across grain boundaries and the extent of reaction at a given reaction site is scaled to the local amount of chemical affinity available to the two or three reactant phases relative to the grain boundary composition. This local affinity is dissipated as the local reaction proceeds, which changes the composition of the adjacent grain boundary “phase” and sets up chemical gradients that drive diffusion along the grain boundaries. Reactions proceed until all affinity is exhausted at which point the rock is essentially at equilibrium. Two extremes are modeled. Reaction-limited growth is modeled as infinitely rapid grain boundary diffusion whereas diffusion-limited growth is modeled by assuming that reactions proceed infinitely fast such that the supply of nutrients and removal of waste products from a reaction site is restricted by the rate of diffusion. Models are presented with model assemblages chlorite + quartz + garnet and chlorite + quartz + muscovite + biotite + plagioclase + garnet. Reaction-limited models result in garnets displaying well-formed “bell-shaped” Mn zoning profiles with all garnet crystals showing similar amounts of growth and zoning profiles. Diffusion-limited models result in mineral growth or consumption that is texture-sensitive such that the amount of consumption or production of a phase depends on the location of the crystal in the sample and the proximity of other phases. For example, the total amount of garnet continues to increase for the duration of diffusion-limited models although locally an individual garnet crystal may first grow and then be consumed. Mn zoning in models with short diffusion times display distinct “peaks” in the central garnet cores, in contrast to the bell-shaped profiles in reaction-limited models. With increasing diffusion times, these Mn zoning profiles evolve towards bell-shapes. These models demonstrate that diffusion-limited growth of garnet porphyroblasts may result in textural and compositional complexities that are not encapsulated by bulk-rock thermodynamic modeling.</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"180 2","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00410-025-02201-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00410-025-02201-z","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Numerical models for the growth of garnet are presented to evaluate the relative significance of reaction-limited growth and diffusion-limited growth following garnet nucleation after significant overstepping of the equilibrium garnet-in reaction. Reactions are only permitted among phases that are adjacent across grain boundaries and the extent of reaction at a given reaction site is scaled to the local amount of chemical affinity available to the two or three reactant phases relative to the grain boundary composition. This local affinity is dissipated as the local reaction proceeds, which changes the composition of the adjacent grain boundary “phase” and sets up chemical gradients that drive diffusion along the grain boundaries. Reactions proceed until all affinity is exhausted at which point the rock is essentially at equilibrium. Two extremes are modeled. Reaction-limited growth is modeled as infinitely rapid grain boundary diffusion whereas diffusion-limited growth is modeled by assuming that reactions proceed infinitely fast such that the supply of nutrients and removal of waste products from a reaction site is restricted by the rate of diffusion. Models are presented with model assemblages chlorite + quartz + garnet and chlorite + quartz + muscovite + biotite + plagioclase + garnet. Reaction-limited models result in garnets displaying well-formed “bell-shaped” Mn zoning profiles with all garnet crystals showing similar amounts of growth and zoning profiles. Diffusion-limited models result in mineral growth or consumption that is texture-sensitive such that the amount of consumption or production of a phase depends on the location of the crystal in the sample and the proximity of other phases. For example, the total amount of garnet continues to increase for the duration of diffusion-limited models although locally an individual garnet crystal may first grow and then be consumed. Mn zoning in models with short diffusion times display distinct “peaks” in the central garnet cores, in contrast to the bell-shaped profiles in reaction-limited models. With increasing diffusion times, these Mn zoning profiles evolve towards bell-shapes. These models demonstrate that diffusion-limited growth of garnet porphyroblasts may result in textural and compositional complexities that are not encapsulated by bulk-rock thermodynamic modeling.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Contributions to Mineralogy and Petrology
Contributions to Mineralogy and Petrology 地学-地球化学与地球物理
CiteScore
6.50
自引率
5.70%
发文量
94
审稿时长
1.7 months
期刊介绍: Contributions to Mineralogy and Petrology is an international journal that accepts high quality research papers in the fields of igneous and metamorphic petrology, geochemistry and mineralogy. Topics of interest include: major element, trace element and isotope geochemistry, geochronology, experimental petrology, igneous and metamorphic petrology, mineralogy, major and trace element mineral chemistry and thermodynamic modeling of petrologic and geochemical processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信