{"title":"Traveling Front Solutions of Dimension n Generate Entire Solutions of Dimension \\((n-1)\\) in Reaction–Diffusion Equations as the Speeds Go to Infinity","authors":"Hirokazu Ninomiya, Masaharu Taniguchi","doi":"10.1007/s00205-025-02083-2","DOIUrl":null,"url":null,"abstract":"<div><p>Multidimensional traveling front solutions and entire solutions of reaction–diffusion equations have been studied intensively. To study the relationship between multidimensional traveling front solutions and entire solutions, we study the reaction–diffusion equation with a bistable nonlinear term. It is well known that there exist multidimensional traveling front solutions with every speed that is greater than the speed of a one-dimensional traveling front solution connecting two stable equilibria. In this paper, we show that the limit of the <i>n</i>-dimensional multidimensional traveling front solutions as the speeds go to infinity generates an entire solution of the same reaction–diffusion equation in the <span>\\((n-1)\\)</span>-dimensional space.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"249 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-025-02083-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-025-02083-2","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Multidimensional traveling front solutions and entire solutions of reaction–diffusion equations have been studied intensively. To study the relationship between multidimensional traveling front solutions and entire solutions, we study the reaction–diffusion equation with a bistable nonlinear term. It is well known that there exist multidimensional traveling front solutions with every speed that is greater than the speed of a one-dimensional traveling front solution connecting two stable equilibria. In this paper, we show that the limit of the n-dimensional multidimensional traveling front solutions as the speeds go to infinity generates an entire solution of the same reaction–diffusion equation in the \((n-1)\)-dimensional space.
期刊介绍:
The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.