Simulation of Heat Transfer during Injection of Annular Gas-Droplet Jet into Turbulent Cross-Flow

IF 1.3 4区 工程技术 Q3 ENGINEERING, MECHANICAL
M. A. Pakhomov
{"title":"Simulation of Heat Transfer during Injection of Annular Gas-Droplet Jet into Turbulent Cross-Flow","authors":"M. A. Pakhomov","doi":"10.1134/S1810232824040106","DOIUrl":null,"url":null,"abstract":"<p>A numerical analysis of the flow structure and thermal efficiency of a gas-droplet jet injected through a radial annular slot into a single-phase air cross-flow has been performed. The calculations were carried out via the axisymmetric RANS approach for the following range of the main parameters of a two-phase flow: the initial size of water droplets <span>\\(d_{1}=0\\)</span>–20 <span>\\(\\mu\\)</span>m and their mass concentration <span>\\(M_{L1}= 0{–}0.1\\)</span>. Gas turbulence was described in a model of transfer of the Reynolds stress components for a two-phase flow. Because of the presence of evaporating liquid droplets, even at relatively small mass concentrations not exceeding 5% of the mass of the secondary flow, the thermal efficiency during transverse injection could more than double compared to the injection of a single-phase radial jet.</p>","PeriodicalId":627,"journal":{"name":"Journal of Engineering Thermophysics","volume":"33 4","pages":"792 - 803"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1810232824040106","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A numerical analysis of the flow structure and thermal efficiency of a gas-droplet jet injected through a radial annular slot into a single-phase air cross-flow has been performed. The calculations were carried out via the axisymmetric RANS approach for the following range of the main parameters of a two-phase flow: the initial size of water droplets \(d_{1}=0\)–20 \(\mu\)m and their mass concentration \(M_{L1}= 0{–}0.1\). Gas turbulence was described in a model of transfer of the Reynolds stress components for a two-phase flow. Because of the presence of evaporating liquid droplets, even at relatively small mass concentrations not exceeding 5% of the mass of the secondary flow, the thermal efficiency during transverse injection could more than double compared to the injection of a single-phase radial jet.

Abstract Image

湍流横流中环形气滴射流的传热模拟
对经径向环空槽注入单相空气交叉流的气滴射流的流动结构和热效率进行了数值分析。通过轴对称RANS方法计算了两相流的主要参数范围:水滴的初始尺寸\(d_{1}=0\) -20 \(\mu\) m及其质量浓度\(M_{L1}= 0{–}0.1\)。用两相流的雷诺应力分量传递模型描述了气体湍流。因为存在蒸发的液滴,即使在相对较小的质量浓度不超过5% of the mass of the secondary flow, the thermal efficiency during transverse injection could more than double compared to the injection of a single-phase radial jet.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Engineering Thermophysics
Journal of Engineering Thermophysics THERMODYNAMICS-ENGINEERING, MECHANICAL
CiteScore
2.30
自引率
12.50%
发文量
0
审稿时长
3 months
期刊介绍: Journal of Engineering Thermophysics is an international peer reviewed journal that publishes original articles. The journal welcomes original articles on thermophysics from all countries in the English language. The journal focuses on experimental work, theory, analysis, and computational studies for better understanding of engineering and environmental aspects of thermophysics. The editorial board encourages the authors to submit papers with emphasis on new scientific aspects in experimental and visualization techniques, mathematical models of thermophysical process, energy, and environmental applications. Journal of Engineering Thermophysics covers all subject matter related to thermophysics, including heat and mass transfer, multiphase flow, conduction, radiation, combustion, thermo-gas dynamics, rarefied gas flow, environmental protection in power engineering, and many others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信