On star statistically compactness

IF 0.9 Q2 MATHEMATICS
Prasenjit Bal, Debjani Rakshit, Susmita Sarkar
{"title":"On star statistically compactness","authors":"Prasenjit Bal,&nbsp;Debjani Rakshit,&nbsp;Susmita Sarkar","doi":"10.1007/s13370-025-01270-4","DOIUrl":null,"url":null,"abstract":"<div><p>In a space <i>X</i>, if for every countable open cover <span>\\(\\mathcal {U} =\\{U_n:n \\in \\textbf{N}\\}\\)</span> of <i>X</i>, we can find a subcover <span>\\({\\mathcal {V}} = \\{U_{m_k}:k \\in \\textbf{N}\\}\\)</span> such that <span>\\(\\delta (\\{m_k: U_{m_k} \\in {\\mathcal {V}} \\})=0\\)</span> then the space is called a statistically compact space. Extending the recent works of Sarkar, Bal, and Rakshit on statistically compactness, we investigate statistically compactness of a topological space in the star-operator’s background. The concept of star statistically compactness is contrasted to other topological features. This study explains the attributes of star statistically compactness and its subspaces under diverse circumstances, especially under open continuous surjection.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01270-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In a space X, if for every countable open cover \(\mathcal {U} =\{U_n:n \in \textbf{N}\}\) of X, we can find a subcover \({\mathcal {V}} = \{U_{m_k}:k \in \textbf{N}\}\) such that \(\delta (\{m_k: U_{m_k} \in {\mathcal {V}} \})=0\) then the space is called a statistically compact space. Extending the recent works of Sarkar, Bal, and Rakshit on statistically compactness, we investigate statistically compactness of a topological space in the star-operator’s background. The concept of star statistically compactness is contrasted to other topological features. This study explains the attributes of star statistically compactness and its subspaces under diverse circumstances, especially under open continuous surjection.

Abstract Image

关于星的统计紧致性
在空间X中,如果对于X的每一个可数开盖\(\mathcal {U} =\{U_n:n \in \textbf{N}\}\),我们都能找到一个子盖\({\mathcal {V}} = \{U_{m_k}:k \in \textbf{N}\}\)使得\(\delta (\{m_k: U_{m_k} \in {\mathcal {V}} \})=0\),则该空间称为统计紧化空间。在Sarkar, Bal和Rakshit的统计紧性研究的基础上,研究了星算子背景下拓扑空间的统计紧性。星型统计紧性的概念与其他拓扑特征进行了对比。本文解释了在不同情况下,特别是在开放连续抛射下,恒星统计紧性及其子空间的属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信