{"title":"Cyclical Variations of Meridional Flows on the Sun","authors":"Irina A. Bilenko","doi":"10.1134/S0016793224700142","DOIUrl":null,"url":null,"abstract":"<p>Based on a large volume of observational data of magnetic fields obtained at both ground-based and space observatories, cyclical variations of the meridional flows of the solar magnetic fields in 21–25 cycles of solar activity are considered. It is shown that magnetic fields of medium strength of different polarities form oppositely directed magnetic fluxes moving from one pole to the opposite, with a period of about 22 years. Flows of high-strength magnetic fields migrate from high to low latitudes symmetrically in both hemispheres with a period of about 11 years. The interaction of multidirectional magnetic fluxes of medium and strong magnetic fields leads to sharp changes in the structure of the global magnetic field, latitudinal redistribution of magnetic fields of positive and negative polarity, the formation of a sector structure of the global magnetic field at the maximum and a zonal structure at the minimum of solar activity, and a change in sign of the magnetic field at the poles of the Sun.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":"64 7","pages":"1089 - 1097"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomagnetism and Aeronomy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016793224700142","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Based on a large volume of observational data of magnetic fields obtained at both ground-based and space observatories, cyclical variations of the meridional flows of the solar magnetic fields in 21–25 cycles of solar activity are considered. It is shown that magnetic fields of medium strength of different polarities form oppositely directed magnetic fluxes moving from one pole to the opposite, with a period of about 22 years. Flows of high-strength magnetic fields migrate from high to low latitudes symmetrically in both hemispheres with a period of about 11 years. The interaction of multidirectional magnetic fluxes of medium and strong magnetic fields leads to sharp changes in the structure of the global magnetic field, latitudinal redistribution of magnetic fields of positive and negative polarity, the formation of a sector structure of the global magnetic field at the maximum and a zonal structure at the minimum of solar activity, and a change in sign of the magnetic field at the poles of the Sun.
期刊介绍:
Geomagnetism and Aeronomy is a bimonthly periodical that covers the fields of interplanetary space; geoeffective solar events; the magnetosphere; the ionosphere; the upper and middle atmosphere; the action of solar variability and activity on atmospheric parameters and climate; the main magnetic field and its secular variations, excursion, and inversion; and other related topics.