Influence of Ferromagnetic Film Thickness on Acoustically Driven Spin Wave Resonances

IF 0.48 Q4 Physics and Astronomy
N. I. Polzikova, S. G. Alekseev, A. O. Raevskiy, S. A. Nikitov
{"title":"Influence of Ferromagnetic Film Thickness on Acoustically Driven Spin Wave Resonances","authors":"N. I. Polzikova,&nbsp;S. G. Alekseev,&nbsp;A. O. Raevskiy,&nbsp;S. A. Nikitov","doi":"10.1134/S1062873824708730","DOIUrl":null,"url":null,"abstract":"<p>We consider the spin wave resonances (SWRs) magnetoelastic excitation and electric detection in a hybrid bulk acoustic wave resonator containing YIG/Pt bilayer. The influence of micrometer and submicrometer yttrium iron garnet (YIG) film thickness on the efficiency of SWR excitation accompanied by a spin pumping from YIG to Pt has been theoretically studied. The frequency and thickness dependencies of inverse spin Hall effect (ISHE) voltage and microwave reflection coefficient are analytically and numerically investigated and discussed. Due to the non-uniform effective magnetic field of elastic nature, the higher SWR modes (both even and odd) can be excited with an efficiency comparable to the efficiency of the fundamental mode at the ferromagnetic resonance frequency. If an integer number of acoustic half-waves fits into the YIG film thickness, forbidden zones arise in the SWR spectrum: at certain thickness values, only even or only odd SWR modes are excited.</p>","PeriodicalId":504,"journal":{"name":"Bulletin of the Russian Academy of Sciences: Physics","volume":"88 1 supplement","pages":"S25 - S30"},"PeriodicalIF":0.4800,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Russian Academy of Sciences: Physics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1062873824708730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the spin wave resonances (SWRs) magnetoelastic excitation and electric detection in a hybrid bulk acoustic wave resonator containing YIG/Pt bilayer. The influence of micrometer and submicrometer yttrium iron garnet (YIG) film thickness on the efficiency of SWR excitation accompanied by a spin pumping from YIG to Pt has been theoretically studied. The frequency and thickness dependencies of inverse spin Hall effect (ISHE) voltage and microwave reflection coefficient are analytically and numerically investigated and discussed. Due to the non-uniform effective magnetic field of elastic nature, the higher SWR modes (both even and odd) can be excited with an efficiency comparable to the efficiency of the fundamental mode at the ferromagnetic resonance frequency. If an integer number of acoustic half-waves fits into the YIG film thickness, forbidden zones arise in the SWR spectrum: at certain thickness values, only even or only odd SWR modes are excited.

Abstract Image

铁磁膜厚度对声驱动自旋波共振的影响
研究了含YIG/Pt双层混合体声波谐振腔中自旋波共振(swr)的磁弹性激发和电探测。从理论上研究了微米级和亚微米级钇铁石榴石(YIG)薄膜厚度对SWR激发效率的影响。本文对逆自旋霍尔效应(ISHE)电压和微波反射系数与频率和厚度的关系进行了解析和数值研究。由于具有弹性性质的非均匀有效磁场,高SWR模式(偶数和奇数)可以以与铁磁共振频率下基模效率相当的效率被激发。如果在YIG薄膜厚度中有整数个声半波,则在SWR谱中出现禁区:在一定的厚度值下,只有偶数或奇数的SWR模式被激发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of the Russian Academy of Sciences: Physics
Bulletin of the Russian Academy of Sciences: Physics Physics and Astronomy-Physics and Astronomy (all)
CiteScore
0.90
自引率
0.00%
发文量
251
期刊介绍: Bulletin of the Russian Academy of Sciences: Physics is an international peer reviewed journal published with the participation of the Russian Academy of Sciences. It presents full-text articles (regular,  letters  to  the editor, reviews) with the most recent results in miscellaneous fields of physics and astronomy: nuclear physics, cosmic rays, condensed matter physics, plasma physics, optics and photonics, nanotechnologies, solar and astrophysics, physical applications in material sciences, life sciences, etc. Bulletin of the Russian Academy of Sciences: Physics  focuses on the most relevant multidisciplinary topics in natural sciences, both fundamental and applied. Manuscripts can be submitted in Russian and English languages and are subject to peer review. Accepted articles are usually combined in thematic issues on certain topics according to the journal editorial policy. Authors featured in the journal represent renowned scientific laboratories and institutes from different countries, including large international collaborations. There are globally recognized researchers among the authors: Nobel laureates and recipients of other awards, and members of national academies of sciences and international scientific societies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信