Rizwan Farooq, Thibault Gendron, Richard S. Edwards, Timothy H. Witney
{"title":"Compact and cGMP-compliant automated synthesis of [18F]FSPG on the Trasis AllinOne™","authors":"Rizwan Farooq, Thibault Gendron, Richard S. Edwards, Timothy H. Witney","doi":"10.1186/s41181-024-00322-7","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>(<i>S</i>)-4-(3-<sup>18</sup>F-Fluoropropyl)-ʟ-glutamic acid ([<sup>18</sup>F]FSPG) is a positron emission tomography radiotracer used to image system x<sub>c</sub><sup>−</sup>, an antiporter that is upregulated in several cancers. Not only does imaging system x<sub>c</sub><sup>−</sup> with [<sup>18</sup>F]FSPG identify tumours, but it can also provide an early readout of response and resistance to therapy. Unfortunately, the clinical production of [<sup>18</sup>F]FSPG has been hampered by a lack of robust, cGMP-compliant methods. Here, we report the automated synthesis of [<sup>18</sup>F]FSPG on the Trasis AllinOne™, overcoming previous limitations to provide a user-friendly method ready for clinical adoption.</p><h3>Results</h3><p>The optimised method provided [<sup>18</sup>F]FSPG in 33.5 ± 4.9% radiochemical yield in just 35 min when starting with 18–25 GBq. Importantly, this method could be scaled up to > 100 GBq starting activity with only a modest reduction in radiochemical yield, providing [<sup>18</sup>F]FSPG with a molar activity of 372 ± 65 GBq/µmol and excellent radiochemical purity (96.8 ± 1.1%). The formulated product was stable when produced with these high starting activities.</p><h3>Conclusions</h3><p>We have developed the first automated synthesis of [<sup>18</sup>F]FSPG on the Trasis AllinOne™. The method produces [<sup>18</sup>F]FSPG with excellent radiochemical purity and in high amounts suitable for large clinical trials and off-site distribution. The method expands the number of synthesis modules capable of producing [<sup>18</sup>F]FSPG and has been carefully designed for cGMP compliance to simplify regulatory approval for clinical production. The methods developed for the purification of high-activity [<sup>18</sup>F]FSPG are transferrable and should aid the development of clinical [<sup>18</sup>F]FSPG productions on other synthesis modules.</p></div>","PeriodicalId":534,"journal":{"name":"EJNMMI Radiopharmacy and Chemistry","volume":"10 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ejnmmipharmchem.springeropen.com/counter/pdf/10.1186/s41181-024-00322-7","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Radiopharmacy and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s41181-024-00322-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Background
(S)-4-(3-18F-Fluoropropyl)-ʟ-glutamic acid ([18F]FSPG) is a positron emission tomography radiotracer used to image system xc−, an antiporter that is upregulated in several cancers. Not only does imaging system xc− with [18F]FSPG identify tumours, but it can also provide an early readout of response and resistance to therapy. Unfortunately, the clinical production of [18F]FSPG has been hampered by a lack of robust, cGMP-compliant methods. Here, we report the automated synthesis of [18F]FSPG on the Trasis AllinOne™, overcoming previous limitations to provide a user-friendly method ready for clinical adoption.
Results
The optimised method provided [18F]FSPG in 33.5 ± 4.9% radiochemical yield in just 35 min when starting with 18–25 GBq. Importantly, this method could be scaled up to > 100 GBq starting activity with only a modest reduction in radiochemical yield, providing [18F]FSPG with a molar activity of 372 ± 65 GBq/µmol and excellent radiochemical purity (96.8 ± 1.1%). The formulated product was stable when produced with these high starting activities.
Conclusions
We have developed the first automated synthesis of [18F]FSPG on the Trasis AllinOne™. The method produces [18F]FSPG with excellent radiochemical purity and in high amounts suitable for large clinical trials and off-site distribution. The method expands the number of synthesis modules capable of producing [18F]FSPG and has been carefully designed for cGMP compliance to simplify regulatory approval for clinical production. The methods developed for the purification of high-activity [18F]FSPG are transferrable and should aid the development of clinical [18F]FSPG productions on other synthesis modules.