Constraints on the Parameters of Solar Superflares Based on Cosmogenic Radiocarbon Data in the Lunar Regolith

IF 0.7 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
G. I. Vasilyev, A. N. Konstantinov, I. V. Kudryavtsev, E. S. Melikhova, V. M. Ostryakov, A. K. Pavlov
{"title":"Constraints on the Parameters of Solar Superflares Based on Cosmogenic Radiocarbon Data in the Lunar Regolith","authors":"G. I. Vasilyev,&nbsp;A. N. Konstantinov,&nbsp;I. V. Kudryavtsev,&nbsp;E. S. Melikhova,&nbsp;V. M. Ostryakov,&nbsp;A. K. Pavlov","doi":"10.1134/S0016793224700075","DOIUrl":null,"url":null,"abstract":"<p>Samples with a short-term (less than a year) increase in the content of the radioactive isotope <sup>14</sup>C were recently discovered in tree rings, in four cases accompanied by concentration growth of <sup>10</sup>Be and <sup>36</sup>Cl in other natural archives. Most publications suggest that this increase is due to a sharp increase in the flux of solar cosmic rays (SCR) at the boundary of the Earth’s atmosphere caused by solar superflares. Other reasons may be connected with the flux rise of the galactic cosmic rays (GCR) as the Solar System passes through a dense interstellar cloud, or a galactic gamma-ray burst. To reconcile the amount of <sup>14</sup>C with cosmogenic isotopes <sup>10</sup>Be and <sup>36</sup>Cl formed in the atmosphere, it is necessary to assume that the proton spectra in such superflares should be harder than most modern experimentally recorded ones. Measurements of the <sup>14</sup>C content in lunar regolith cores returned by the Apollo 15 expedition showed a significant drop in radiocarbon concentration to a depth of 5 g/cm<sup>2</sup>, followed by an increase to maximum values at about 50 g/cm<sup>2</sup> then a decrease. At shallow depths, the contribution from low-energy SCRs predominates, and at large depths, the contribution from high-energy GCRs prevails. Analysis of the depth profile of the <sup>14</sup>Cconcentration makes it possible to establish SCR fluxes and spectra over several radiocarbon half-lives (10 000–20 000 years) and highlight the possible contribution of hypothetical superflares. Our analysis shows that the hypothesis of solar superflares worsens the agreement with the observed depth variations of <sup>14</sup>C in the lunar regolith.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":"64 7","pages":"1049 - 1053"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomagnetism and Aeronomy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016793224700075","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Samples with a short-term (less than a year) increase in the content of the radioactive isotope 14C were recently discovered in tree rings, in four cases accompanied by concentration growth of 10Be and 36Cl in other natural archives. Most publications suggest that this increase is due to a sharp increase in the flux of solar cosmic rays (SCR) at the boundary of the Earth’s atmosphere caused by solar superflares. Other reasons may be connected with the flux rise of the galactic cosmic rays (GCR) as the Solar System passes through a dense interstellar cloud, or a galactic gamma-ray burst. To reconcile the amount of 14C with cosmogenic isotopes 10Be and 36Cl formed in the atmosphere, it is necessary to assume that the proton spectra in such superflares should be harder than most modern experimentally recorded ones. Measurements of the 14C content in lunar regolith cores returned by the Apollo 15 expedition showed a significant drop in radiocarbon concentration to a depth of 5 g/cm2, followed by an increase to maximum values at about 50 g/cm2 then a decrease. At shallow depths, the contribution from low-energy SCRs predominates, and at large depths, the contribution from high-energy GCRs prevails. Analysis of the depth profile of the 14Cconcentration makes it possible to establish SCR fluxes and spectra over several radiocarbon half-lives (10 000–20 000 years) and highlight the possible contribution of hypothetical superflares. Our analysis shows that the hypothesis of solar superflares worsens the agreement with the observed depth variations of 14C in the lunar regolith.

Abstract Image

基于月球风化层放射性碳数据的太阳超级耀斑参数约束
最近在树木年轮中发现了放射性同位素14C含量短期(不到一年)增加的样品,在其他自然档案中有四个案例伴随着10Be和36Cl浓度的增长。大多数出版物认为,这种增加是由于太阳超级耀斑引起的地球大气层边界处太阳宇宙射线(SCR)通量的急剧增加。其他原因可能与星系宇宙射线(GCR)的通量上升有关,因为太阳系穿过密集的星际云,或者星系伽马射线爆发。为了使14C的数量与大气中形成的宇宙成因同位素10Be和36Cl相一致,有必要假设这种超级耀斑中的质子光谱应该比大多数现代实验记录的质子光谱更难。对阿波罗15号探险队带回的月球风化岩芯中14C含量的测量显示,放射性碳浓度显著下降至5 g/cm2的深度,随后增加到最大值,约为50 g/cm2,然后下降。在较浅的深度,低能scr的贡献占主导地位,而在较大的深度,高能量gcr的贡献占主导地位。通过对14c浓度深度剖面的分析,可以建立几个放射性碳半衰期(10,000 - 20,000年)的SCR通量和光谱,并突出假设的超级耀斑的可能贡献。我们的分析表明,太阳超级耀斑的假设恶化了与观测到的月球风化层中14C深度变化的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geomagnetism and Aeronomy
Geomagnetism and Aeronomy Earth and Planetary Sciences-Space and Planetary Science
CiteScore
1.30
自引率
33.30%
发文量
65
审稿时长
4-8 weeks
期刊介绍: Geomagnetism and Aeronomy is a bimonthly periodical that covers the fields of interplanetary space; geoeffective solar events; the magnetosphere; the ionosphere; the upper and middle atmosphere; the action of solar variability and activity on atmospheric parameters and climate; the main magnetic field and its secular variations, excursion, and inversion; and other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信