E. K. Anderzhanov, S. P. Medvedev, S. V. Khomik, G. L. Agafonov, A. N. Ivantsov, V. N. Mikhalkin, A. M. Tereza, I. V. Bilera
{"title":"Experimental Simulation of Pyrolysis Products Recycling via Detonation","authors":"E. K. Anderzhanov, S. P. Medvedev, S. V. Khomik, G. L. Agafonov, A. N. Ivantsov, V. N. Mikhalkin, A. M. Tereza, I. V. Bilera","doi":"10.1134/S1990793124701379","DOIUrl":null,"url":null,"abstract":"<p>Earlier the efficiency of a stand in form of the open-end Π-shape tube for deflagration-to-detonation transition (DDT) of propane—air mixtures at normal pressure was shown. In this work, the study of the DDT is extended to the mixtures modeling real gaseous pyrolysis products of polyethylene and rubber-containing industrial and domestic waste. Modeling mixtures with air contain Н<sub>2</sub>, СН<sub>4</sub>, С<sub>2</sub>Н<sub>6</sub>, С<sub>2</sub>Н<sub>4</sub>, С<sub>3</sub>Н<sub>8</sub> and С<sub>3</sub>Н<sub>6</sub> in stoichiometric or lean concentration based on the experimental data presented in the literature. Conditions when the DDT can be reached (stand design, initial pyrolysis products mixture concentration) are defined. Measurements of the temperature of the mixture passed through the stand in addition to dynamic measurements allow to define the character of the processing: DDT, fast or slow deflagration. It has been shown that propane as a model fuel may be used instead of pyrolysis gases mixtures when studying DDT. The results supposed to be helpful for the waste recycling industrial setups engineering.</p>","PeriodicalId":768,"journal":{"name":"Russian Journal of Physical Chemistry B","volume":"18 6","pages":"1521 - 1527"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Physical Chemistry B","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1990793124701379","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Earlier the efficiency of a stand in form of the open-end Π-shape tube for deflagration-to-detonation transition (DDT) of propane—air mixtures at normal pressure was shown. In this work, the study of the DDT is extended to the mixtures modeling real gaseous pyrolysis products of polyethylene and rubber-containing industrial and domestic waste. Modeling mixtures with air contain Н2, СН4, С2Н6, С2Н4, С3Н8 and С3Н6 in stoichiometric or lean concentration based on the experimental data presented in the literature. Conditions when the DDT can be reached (stand design, initial pyrolysis products mixture concentration) are defined. Measurements of the temperature of the mixture passed through the stand in addition to dynamic measurements allow to define the character of the processing: DDT, fast or slow deflagration. It has been shown that propane as a model fuel may be used instead of pyrolysis gases mixtures when studying DDT. The results supposed to be helpful for the waste recycling industrial setups engineering.
期刊介绍:
Russian Journal of Physical Chemistry B: Focus on Physics is a journal that publishes studies in the following areas: elementary physical and chemical processes; structure of chemical compounds, reactivity, effect of external field and environment on chemical transformations; molecular dynamics and molecular organization; dynamics and kinetics of photoand radiation-induced processes; mechanism of chemical reactions in gas and condensed phases and at interfaces; chain and thermal processes of ignition, combustion and detonation in gases, two-phase and condensed systems; shock waves; new physical methods of examining chemical reactions; and biological processes in chemical physics.