Xiaoxia Yang, Zhishuai Zheng, Huanqi Zheng, Xiaoping Liu
{"title":"Deep Learning Method of Precious Wood Image Classification Based on Microscopic Computed Tomography","authors":"Xiaoxia Yang, Zhishuai Zheng, Huanqi Zheng, Xiaoping Liu","doi":"10.1134/S1061830924602447","DOIUrl":null,"url":null,"abstract":"<p>Correctly identifying precious wood species is crucial for import and export trade and furniture material identification. This study utilizes nondestructive testing (microscopic computed tomography, Micro-CT) to capture microscopic images of the transverse, radial, and tangential sections of 24 precious wood species, creating a comprehensive dataset. The SLConNet deep learning model is developed, enhancing recognition accuracy through multi-scale convolution and an improved residual block structure. The experiment results show that the classification accuracy of the transverse, radial and tangential sections is 98.72, 96.75, and 95.36%, respectively, when the gain value is 0.8. The model outperforms traditional models like Alexnet, ResNet50, Inception-V3, and Xception. This research highlights the efficiency of nondestructive testing in obtaining a large number of microscopic wood images, compared to traditional anatomical methods. The SLConNet model showcases high accuracy in precision, recall, and specificity, suggesting its potential for widespread applications in wood classification.</p>","PeriodicalId":764,"journal":{"name":"Russian Journal of Nondestructive Testing","volume":"60 10","pages":"1136 - 1148"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Nondestructive Testing","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1061830924602447","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Correctly identifying precious wood species is crucial for import and export trade and furniture material identification. This study utilizes nondestructive testing (microscopic computed tomography, Micro-CT) to capture microscopic images of the transverse, radial, and tangential sections of 24 precious wood species, creating a comprehensive dataset. The SLConNet deep learning model is developed, enhancing recognition accuracy through multi-scale convolution and an improved residual block structure. The experiment results show that the classification accuracy of the transverse, radial and tangential sections is 98.72, 96.75, and 95.36%, respectively, when the gain value is 0.8. The model outperforms traditional models like Alexnet, ResNet50, Inception-V3, and Xception. This research highlights the efficiency of nondestructive testing in obtaining a large number of microscopic wood images, compared to traditional anatomical methods. The SLConNet model showcases high accuracy in precision, recall, and specificity, suggesting its potential for widespread applications in wood classification.
期刊介绍:
Russian Journal of Nondestructive Testing, a translation of Defectoskopiya, is a publication of the Russian Academy of Sciences. This publication offers current Russian research on the theory and technology of nondestructive testing of materials and components. It describes laboratory and industrial investigations of devices and instrumentation and provides reviews of new equipment developed for series manufacture. Articles cover all physical methods of nondestructive testing, including magnetic and electrical; ultrasonic; X-ray and Y-ray; capillary; liquid (color luminescence), and radio (for materials of low conductivity).