Data-driven analysis of text-mined seed-mediated syntheses of gold nanoparticles†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sanghoon Lee, Kevin Cruse, Samuel P. Gleason, A. Paul Alivisatos, Gerbrand Ceder and Anubhav Jain
{"title":"Data-driven analysis of text-mined seed-mediated syntheses of gold nanoparticles†","authors":"Sanghoon Lee, Kevin Cruse, Samuel P. Gleason, A. Paul Alivisatos, Gerbrand Ceder and Anubhav Jain","doi":"10.1039/D4DD00158C","DOIUrl":null,"url":null,"abstract":"<p >Gold nanoparticles (AuNPs) are widely used functional nanomaterials that exhibit adjustable properties depending on their shapes and sizes. Creating a comprehensive dataset of AuNP syntheses is useful for understanding how to control their morphology and size. Here, we employed search-based algorithms and fine-tuned the Llama-2 large language model to extract 492 multi-sourced seed-mediated AuNP synthesis recipes from the literature. With this dataset which we share online, we verified that the type of seed capping agent such as CTAB or citrate plays a crucial role in determining the morphology of the AuNPs, aligning with established findings in the field. We also observe a weak correlation between the final AuNR aspect ratio and silver concentration, although a large variance reduces the significance of this relationship. Overall, our work demonstrates the value of literature-based datasets in advancing knowledge in the field of nanomaterial synthesis for further exploration and better reproducibility.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 1","pages":" 93-104"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d4dd00158c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00158c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Gold nanoparticles (AuNPs) are widely used functional nanomaterials that exhibit adjustable properties depending on their shapes and sizes. Creating a comprehensive dataset of AuNP syntheses is useful for understanding how to control their morphology and size. Here, we employed search-based algorithms and fine-tuned the Llama-2 large language model to extract 492 multi-sourced seed-mediated AuNP synthesis recipes from the literature. With this dataset which we share online, we verified that the type of seed capping agent such as CTAB or citrate plays a crucial role in determining the morphology of the AuNPs, aligning with established findings in the field. We also observe a weak correlation between the final AuNR aspect ratio and silver concentration, although a large variance reduces the significance of this relationship. Overall, our work demonstrates the value of literature-based datasets in advancing knowledge in the field of nanomaterial synthesis for further exploration and better reproducibility.

Abstract Image

文本挖掘种子介导的金纳米颗粒合成的数据驱动分析
金纳米粒子(AuNPs)是一种广泛应用的功能纳米材料,具有根据其形状和大小可调节的特性。创建一个综合的AuNP合成数据集对于理解如何控制它们的形态和大小是有用的。本文采用基于搜索的算法,并对Llama-2大语言模型进行了微调,从文献中提取了492种多源种子介导的AuNP合成配方。通过我们在网上分享的数据集,我们验证了CTAB或柠檬酸盐等种子封盖剂的类型在决定aunp的形态方面起着至关重要的作用,这与该领域的既定发现相一致。我们还观察到最终的unr纵横比与银浓度之间存在弱相关性,尽管较大的方差降低了这种关系的显著性。总的来说,我们的工作证明了基于文献的数据集在推进纳米材料合成领域的知识方面的价值,以进一步探索和更好的可重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信