Structural contributions of Zn in enhancing CO2 hydrogenation to methanol over ZnxZrOy catalysts†

IF 4.4 3区 化学 Q2 CHEMISTRY, PHYSICAL
Zinat Zanganeh, Max Bols, Parviz Yazdani, Hilde Poelman and Mark Saeys
{"title":"Structural contributions of Zn in enhancing CO2 hydrogenation to methanol over ZnxZrOy catalysts†","authors":"Zinat Zanganeh, Max Bols, Parviz Yazdani, Hilde Poelman and Mark Saeys","doi":"10.1039/D4CY01175A","DOIUrl":null,"url":null,"abstract":"<p >Single-reactor CO<small><sub>2</sub></small> conversion to light olefins <em>via</em> methanol is currently obstructed by the incompatible reaction conditions for the CO<small><sub>2</sub></small> to methanol and methanol to olefin steps. The conventional Cu/ZnO–Al<small><sub>2</sub></small>O<small><sub>3</sub></small> CO<small><sub>2</sub></small> hydrogenation catalysts produce excessive CO and rapidly deactivate at the high temperatures preferred for methanol to olefins with zeolite or SAPO catalysts. Zn<small><sub><em>x</em></sub></small>ZrO<small><sub><em>y</em></sub></small> catalysts are a promising alternative to Cu/ZnO–Al<small><sub>2</sub></small>O<small><sub>3</sub></small>. We studied Zn<small><sub><em>x</em></sub></small>ZrO<small><sub><em>y</em></sub></small> with varying Zn doping levels, using XRD, XPS, H<small><sub>2</sub></small>-TPR, CO<small><sub>2</sub></small>-TPD, N<small><sub>2</sub></small>-physisorption, DRIFT, and Raman spectroscopy, along with CO<small><sub>2</sub></small> conversion and methanol selectivity measurements, to examine structure-performance relationships in CO<small><sub>2</sub></small> hydrogenation to methanol. The interplay between dopant concentration, calcination temperature, and crystal structure dictates the catalyst's phase composition, which correlates with catalytic performance. The pristine ZrO<small><sub>2</sub></small> is a mixture of tetragonal and monoclinic phases. At Zn/Zr = 0.01, the tetragonal phase is dominant, while for Zn/Zr = 0.07–0.28, the cubic phase is obtained. Above Zn/Zr = 0.28, phase separation of ZnO occurs. For CO<small><sub>2</sub></small> hydrogenation to methanol, a Zn/Zr = 0.07–0.28 performs best. Zinc addition increases catalyst surface area, pore volume, basicity, and reducibility. XPS analysis reveals zinc enrichment near the surface and the formation of Zr–O–Zn species upon Zn incorporation into ZrO<small><sub>2</sub></small>. A clear correlation between Zn content and catalyst activity is generally absent, but this relationship becomes evident in cubic-phase materials. At least in part, the relevance of zinc doping for CO<small><sub>2</sub></small> to methanol lies in its ability to distort the structure of zirconia, creating a cubic phase, with implications for selectivity that correlate with the adsorption of CO<small><sub>2</sub></small> and H<small><sub>2</sub></small>.</p>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":" 2","pages":" 563-579"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/cy/d4cy01175a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cy/d4cy01175a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Single-reactor CO2 conversion to light olefins via methanol is currently obstructed by the incompatible reaction conditions for the CO2 to methanol and methanol to olefin steps. The conventional Cu/ZnO–Al2O3 CO2 hydrogenation catalysts produce excessive CO and rapidly deactivate at the high temperatures preferred for methanol to olefins with zeolite or SAPO catalysts. ZnxZrOy catalysts are a promising alternative to Cu/ZnO–Al2O3. We studied ZnxZrOy with varying Zn doping levels, using XRD, XPS, H2-TPR, CO2-TPD, N2-physisorption, DRIFT, and Raman spectroscopy, along with CO2 conversion and methanol selectivity measurements, to examine structure-performance relationships in CO2 hydrogenation to methanol. The interplay between dopant concentration, calcination temperature, and crystal structure dictates the catalyst's phase composition, which correlates with catalytic performance. The pristine ZrO2 is a mixture of tetragonal and monoclinic phases. At Zn/Zr = 0.01, the tetragonal phase is dominant, while for Zn/Zr = 0.07–0.28, the cubic phase is obtained. Above Zn/Zr = 0.28, phase separation of ZnO occurs. For CO2 hydrogenation to methanol, a Zn/Zr = 0.07–0.28 performs best. Zinc addition increases catalyst surface area, pore volume, basicity, and reducibility. XPS analysis reveals zinc enrichment near the surface and the formation of Zr–O–Zn species upon Zn incorporation into ZrO2. A clear correlation between Zn content and catalyst activity is generally absent, but this relationship becomes evident in cubic-phase materials. At least in part, the relevance of zinc doping for CO2 to methanol lies in its ability to distort the structure of zirconia, creating a cubic phase, with implications for selectivity that correlate with the adsorption of CO2 and H2.

Abstract Image

Zn在ZnxZrOy催化剂上促进CO2加氢制甲醇中的结构贡献
目前,由于CO2制甲醇和甲醇制烯烃的反应条件不相容,阻碍了单反应器中CO2经甲醇转化为轻烯烃。传统的Cu/ ZnO-Al2O3 CO2加氢催化剂产生过多的CO,在高温下迅速失活,沸石或SAPO催化剂更适合甲醇和烯烃。ZnxZrOy催化剂是Cu/ ZnO-Al2O3的理想替代品。我们研究了不同锌掺杂水平的ZnxZrOy,使用XRD, XPS, H2-TPR, CO2- tpd, n2 -物理吸附,DRIFT和拉曼光谱,以及二氧化碳转化和甲醇选择性测量,以研究二氧化碳加氢制甲醇的结构-性能关系。掺杂剂浓度、煅烧温度和晶体结构之间的相互作用决定了催化剂的相组成,而相组成又与催化性能有关。原始的ZrO2是四方相和单斜相的混合物。当Zn/Zr = 0.01时,以四方相为主;当Zn/Zr = 0.07 ~ 0.28时,以立方相为主。当Zn/Zr = 0.28时,ZnO发生相分离。当Zn/Zr = 0.07 ~ 0.28时,CO2加氢制甲醇效果最佳。锌的加入增加了催化剂的表面积、孔隙体积、碱度和还原性。XPS分析表明,锌在表面附近富集,并与ZrO2结合形成Zr-O-Zn。锌含量与催化剂活性之间通常没有明确的相关性,但这种关系在三相材料中变得明显。至少在某种程度上,锌掺杂二氧化碳与甲醇的相关性在于其扭曲氧化锆结构的能力,从而产生立方相,这意味着与CO2和H2的吸附相关的选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信