Boosting photoelectrochemical water splitting: enhanced hole transport in BiVO4 photoanodes via interfacial coupling†

IF 4.4 3区 化学 Q2 CHEMISTRY, PHYSICAL
Hairu Wang, Yuying Bai, Rongling Wang, Yanan Fu, Qiong Mei, Bo Bai and Qizhao Wang
{"title":"Boosting photoelectrochemical water splitting: enhanced hole transport in BiVO4 photoanodes via interfacial coupling†","authors":"Hairu Wang, Yuying Bai, Rongling Wang, Yanan Fu, Qiong Mei, Bo Bai and Qizhao Wang","doi":"10.1039/D4CY01284D","DOIUrl":null,"url":null,"abstract":"<p >In the realm of photoelectrochemical (PEC) water splitting, the oxygen evolution reaction (OER) poses a significant efficiency bottleneck. To address this challenge, multi-interfacial optimization of BiVO<small><sub>4</sub></small>-based composites to enhance charge transport within the material matrix has emerged as a pivotal strategy for improving PEC performance. In this study, we present a comprehensive report on the design and fabrication of an innovative heterostructured NiFe-LDH/Co<small><sub>3</sub></small>O<small><sub>4</sub></small>/BiVO<small><sub>4</sub></small> thin film. Through a series of meticulously designed experiments and characterization techniques, we delve into the operational mechanisms underlying the interfacial coupling effect of this composite photoanode. Notably, the sandwich-configured NiFe-LDH/Co<small><sub>3</sub></small>O<small><sub>4</sub></small>/BiVO<small><sub>4</sub></small> photoanode demonstrates remarkable OER performance. Under standard solar simulation conditions, it achieves a photocurrent density of 4.7 mA cm<small><sup>−2</sup></small> at 1.23 V <em>vs.</em> RHE in a 1.0 M KBi solution, marking a nearly fourfold enhancement compared to the pure BiVO<small><sub>4</sub></small> photoanode. Our structural, compositional, and electrochemical analyses reveal that NiFe-LDH functions as a highly effective cocatalyst, substantially reducing the overpotential for water oxidation. Furthermore, the strategic incorporation of Co<small><sub>3</sub></small>O<small><sub>4</sub></small> not only establishes a built-in electric field at the BiVO<small><sub>4</sub></small> interface, thereby facilitating efficient charge separation, but also fine-tunes the electronic structure of the metal centres in NiFe-LDH, leading to an increased number of oxidation active sites. These synergistic effects significantly enhance the charge separation efficiency and long-term operational stability of the PEC system. These advancements are attributed to the intricate interfacial coupling between NiFe-LDH, Co<small><sub>3</sub></small>O<small><sub>4</sub></small> nanoparticles, and BiVO<small><sub>4</sub></small>, underscoring the immense potential of this composite material in the domain of efficient photoelectrocatalysis.</p>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":" 2","pages":" 405-415"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cy/d4cy01284d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the realm of photoelectrochemical (PEC) water splitting, the oxygen evolution reaction (OER) poses a significant efficiency bottleneck. To address this challenge, multi-interfacial optimization of BiVO4-based composites to enhance charge transport within the material matrix has emerged as a pivotal strategy for improving PEC performance. In this study, we present a comprehensive report on the design and fabrication of an innovative heterostructured NiFe-LDH/Co3O4/BiVO4 thin film. Through a series of meticulously designed experiments and characterization techniques, we delve into the operational mechanisms underlying the interfacial coupling effect of this composite photoanode. Notably, the sandwich-configured NiFe-LDH/Co3O4/BiVO4 photoanode demonstrates remarkable OER performance. Under standard solar simulation conditions, it achieves a photocurrent density of 4.7 mA cm−2 at 1.23 V vs. RHE in a 1.0 M KBi solution, marking a nearly fourfold enhancement compared to the pure BiVO4 photoanode. Our structural, compositional, and electrochemical analyses reveal that NiFe-LDH functions as a highly effective cocatalyst, substantially reducing the overpotential for water oxidation. Furthermore, the strategic incorporation of Co3O4 not only establishes a built-in electric field at the BiVO4 interface, thereby facilitating efficient charge separation, but also fine-tunes the electronic structure of the metal centres in NiFe-LDH, leading to an increased number of oxidation active sites. These synergistic effects significantly enhance the charge separation efficiency and long-term operational stability of the PEC system. These advancements are attributed to the intricate interfacial coupling between NiFe-LDH, Co3O4 nanoparticles, and BiVO4, underscoring the immense potential of this composite material in the domain of efficient photoelectrocatalysis.

Abstract Image

促进光电化学水分解:通过界面耦合增强BiVO4光阳极中的空穴输运
在光电化学(PEC)水分解领域,析氧反应(OER)是一个重要的效率瓶颈。为了应对这一挑战,基于bivo4的复合材料的多界面优化,以增强材料基体内的电荷传输,已经成为提高PEC性能的关键策略。在这项研究中,我们全面报道了一种创新的异质结构NiFe-LDH/Co3O4/BiVO4薄膜的设计和制造。通过一系列精心设计的实验和表征技术,我们深入研究了这种复合光阳极界面耦合效应的操作机制。值得注意的是,三明治结构的nfe - ldh /Co3O4/BiVO4光阳极具有出色的OER性能。在标准太阳模拟条件下,在1.0 M KBi溶液中,与RHE相比,它在1.23 V下实现了4.7 mA cm−2的光电流密度,与纯BiVO4光阳极相比,光电流密度提高了近四倍。我们的结构、组成和电化学分析表明,NiFe-LDH作为一种高效的助催化剂,大大降低了水氧化的过电位。此外,Co3O4的战略性加入不仅在BiVO4界面上建立了内置电场,从而促进了有效的电荷分离,而且还微调了NiFe-LDH中金属中心的电子结构,导致氧化活性位点的数量增加。这些协同效应显著提高了电荷分离效率和PEC系统的长期运行稳定性。这些进展归功于nfe - ldh、Co3O4纳米颗粒和BiVO4之间复杂的界面耦合,强调了这种复合材料在高效光电催化领域的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信