A materials discovery framework based on conditional generative models applied to the design of polymer electrolytes†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Arash Khajeh, Xiangyun Lei, Weike Ye, Zhenze Yang, Linda Hung, Daniel Schweigert and Ha-Kyung Kwon
{"title":"A materials discovery framework based on conditional generative models applied to the design of polymer electrolytes†","authors":"Arash Khajeh, Xiangyun Lei, Weike Ye, Zhenze Yang, Linda Hung, Daniel Schweigert and Ha-Kyung Kwon","doi":"10.1039/D4DD00293H","DOIUrl":null,"url":null,"abstract":"<p >In this work, we introduce a computational polymer discovery framework that efficiently designs polymers with tailored properties. The framework comprises three core components—a conditioned generative model, a computational evaluation module, and a feedback mechanism—all integrated into an iterative framework for material innovation. To demonstrate the efficacy of this framework, we used it to design polymer electrolyte materials with high ionic conductivity. A conditional generative model based on the minGPT architecture can generate candidate polymers that exhibit a mean ionic conductivity that is greater than that of the original training set. This approach, coupled with molecular dynamics (MD) simulations for testing and a specifically planned acquisition mechanism, allows the framework to refine its output iteratively. Notably, we observe an increase in both the mean and the lower bound of the ionic conductivity of the new polymer candidates. The framework's effectiveness is underscored by its identification of 14 distinct polymer repeating units that display a computed ionic conductivity surpassing that of polyethylene oxide (PEO).</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 1","pages":" 11-20"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d4dd00293h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00293h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we introduce a computational polymer discovery framework that efficiently designs polymers with tailored properties. The framework comprises three core components—a conditioned generative model, a computational evaluation module, and a feedback mechanism—all integrated into an iterative framework for material innovation. To demonstrate the efficacy of this framework, we used it to design polymer electrolyte materials with high ionic conductivity. A conditional generative model based on the minGPT architecture can generate candidate polymers that exhibit a mean ionic conductivity that is greater than that of the original training set. This approach, coupled with molecular dynamics (MD) simulations for testing and a specifically planned acquisition mechanism, allows the framework to refine its output iteratively. Notably, we observe an increase in both the mean and the lower bound of the ionic conductivity of the new polymer candidates. The framework's effectiveness is underscored by its identification of 14 distinct polymer repeating units that display a computed ionic conductivity surpassing that of polyethylene oxide (PEO).

Abstract Image

基于条件生成模型的材料发现框架在聚合物电解质设计中的应用
在这项工作中,我们引入了一个计算聚合物发现框架,可以有效地设计具有定制特性的聚合物。该框架包括三个核心组件——条件生成模型、计算评估模块和反馈机制——所有这些都集成到材料创新的迭代框架中。为了证明该框架的有效性,我们使用它来设计具有高离子电导率的聚合物电解质材料。基于minGPT架构的条件生成模型可以生成平均离子电导率大于原始训练集的候选聚合物。这种方法与用于测试的分子动力学(MD)模拟和专门计划的获取机制相结合,允许框架迭代地改进其输出。值得注意的是,我们观察到新的候选聚合物的离子电导率的平均值和下界都有所增加。该框架的有效性是通过其识别14种不同的聚合物重复单元来强调的,这些重复单元显示出超过聚乙烯氧化物(PEO)的计算离子电导率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信