Prakash Tekchandani;Abhishek Bisht;Ashok Kumar Das;Neeraj Kumar;Marimuthu Karuppiah;Pandi Vijayakumar;Youngho Park
{"title":"Blockchain-Enabled Secure Collaborative Model Learning Using Differential Privacy for IoT-Based Big Data Analytics","authors":"Prakash Tekchandani;Abhishek Bisht;Ashok Kumar Das;Neeraj Kumar;Marimuthu Karuppiah;Pandi Vijayakumar;Youngho Park","doi":"10.1109/TBDATA.2024.3394700","DOIUrl":null,"url":null,"abstract":"With the rise of Big data generated by Internet of Things (IoT) smart devices, there is an increasing need to leverage its potential while protecting privacy and maintaining confidentiality. Privacy and confidentiality in Big Data aims to enable data analysis and machine learning on large-scale datasets without compromising the dataset sensitive information. Usually current Big Data analytics models either efficiently achieves privacy or confidentiality. In this article, we aim to design a novel blockchain-enabled secured collaborative machine learning approach that provides privacy and confidentially on large scale datasets generated by IoT devices. Blockchain is used as secured platform to store and access data as well as to provide immutability and traceability. We also propose an efficient approach to obtain robust machine learning model through use of cryptographic techniques and differential privacy in which the data among involved parties is shared in a secured way while maintaining privacy and confidentiality of the data. The experimental evaluation along with security and performance analysis show that the proposed approach provides accuracy and scalability without compromising the privacy and security.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"11 1","pages":"141-156"},"PeriodicalIF":7.5000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10509745/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
With the rise of Big data generated by Internet of Things (IoT) smart devices, there is an increasing need to leverage its potential while protecting privacy and maintaining confidentiality. Privacy and confidentiality in Big Data aims to enable data analysis and machine learning on large-scale datasets without compromising the dataset sensitive information. Usually current Big Data analytics models either efficiently achieves privacy or confidentiality. In this article, we aim to design a novel blockchain-enabled secured collaborative machine learning approach that provides privacy and confidentially on large scale datasets generated by IoT devices. Blockchain is used as secured platform to store and access data as well as to provide immutability and traceability. We also propose an efficient approach to obtain robust machine learning model through use of cryptographic techniques and differential privacy in which the data among involved parties is shared in a secured way while maintaining privacy and confidentiality of the data. The experimental evaluation along with security and performance analysis show that the proposed approach provides accuracy and scalability without compromising the privacy and security.
期刊介绍:
The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.