Predicting mechanical properties of non-equimolar high-entropy carbides using machine learning†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xi Zhao, Shu-guang Cheng, Sen Yu, Jiming Zheng, Rui-Zhi Zhang and Meng Guo
{"title":"Predicting mechanical properties of non-equimolar high-entropy carbides using machine learning†","authors":"Xi Zhao, Shu-guang Cheng, Sen Yu, Jiming Zheng, Rui-Zhi Zhang and Meng Guo","doi":"10.1039/D4DD00243A","DOIUrl":null,"url":null,"abstract":"<p >High-entropy carbides (HECs) have garnered significant attention due to their unique mechanical properties. However, the design of novel HECs has been limited by extensive trial-and-error strategies, along with insufficient knowledge and computational capabilities. In this work, the intrinsic correlations between elements in the high-dimensional compositional space of HECs are investigated using high-throughput density functional theory calculations and two machine learning models, which enable us to predict the Young's modulus, hardness and wear resistance with only a chemical formula provided. Our models demonstrate a low root mean square error (11.5 GPa) and mean absolute error (9.0 GPa) in predicting the elastic modulus of HECs with arbitrary non-equimolar compositions. We further established a database of 566 370 HECs and identified 15 novel HECs with the best mechanical properties. Our models can rapidly explore the mechanical properties of HECs with descriptor–property correlation analysis, and hence provide an efficient method for accelerating the design of non-equimolar high-entropy materials with desired performance.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 1","pages":" 264-274"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d4dd00243a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00243a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-entropy carbides (HECs) have garnered significant attention due to their unique mechanical properties. However, the design of novel HECs has been limited by extensive trial-and-error strategies, along with insufficient knowledge and computational capabilities. In this work, the intrinsic correlations between elements in the high-dimensional compositional space of HECs are investigated using high-throughput density functional theory calculations and two machine learning models, which enable us to predict the Young's modulus, hardness and wear resistance with only a chemical formula provided. Our models demonstrate a low root mean square error (11.5 GPa) and mean absolute error (9.0 GPa) in predicting the elastic modulus of HECs with arbitrary non-equimolar compositions. We further established a database of 566 370 HECs and identified 15 novel HECs with the best mechanical properties. Our models can rapidly explore the mechanical properties of HECs with descriptor–property correlation analysis, and hence provide an efficient method for accelerating the design of non-equimolar high-entropy materials with desired performance.

Abstract Image

用机器学习预测非等摩尔高熵碳化物的力学性能
高熵碳化物(HECs)由于其独特的力学性能而引起了人们的广泛关注。然而,新型hec的设计受到广泛的试错策略以及知识和计算能力不足的限制。在这项工作中,利用高通量密度泛函理论计算和两种机器学习模型研究了HECs高维组成空间中元素之间的内在相关性,这使我们能够仅通过提供化学式来预测杨氏模量,硬度和耐磨性。我们的模型在预测任意非等摩尔成分的HECs弹性模量时具有较低的均方根误差(11.5 GPa)和平均绝对误差(9.0 GPa)。我们进一步建立了566 370个hec的数据库,并鉴定出15个具有最佳力学性能的新型hec。我们的模型可以通过描述-性能相关分析快速探索HECs的力学性能,从而为加速设计具有理想性能的非等摩尔高熵材料提供了一种有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信