Residential Energy Management Method Based on the Proposed A3C-FER

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jinjiang Zhang;Qiang Lin;Lu Wang;Orefo Victor Arinze;Zihan Hu;Yantai Huang
{"title":"Residential Energy Management Method Based on the Proposed A3C-FER","authors":"Jinjiang Zhang;Qiang Lin;Lu Wang;Orefo Victor Arinze;Zihan Hu;Yantai Huang","doi":"10.1109/ACCESS.2025.3529872","DOIUrl":null,"url":null,"abstract":"Deep reinforcement learning has been widely applied in the field of residential energy management, showcasing considerable promise in enhancing energy efficiency and reducing energy consumption. However, it is observed that some methodologies still suffer from inadequate data exploitation, which results in suboptimal policy performance. In this study, focusing on the residential energy management system, an innovative reinforcement learning method is proposed. This novel method fuses the asynchronous advantage actor-critic architecture with a familiarity-based experience replay mechanism, with the ambition of markedly improving learning efficiency and control performance. Numerical comparisons were made to justify the effectiveness of the method. Experimental results across diverse cases confirm that the proposed algorithm can effectively achieve optimal energy scheduling for residential sectors. Furthermore, the proposed methodology has demonstrated a notable reduction in grid interaction expenses, achieving a decrease of 27.03% and 16.38% relative to the other two scenarios. In comparison with the Proximal Policy Optimization (PPO) and Deep Q-Network (DQN) algorithms, the novel approach not only improves the average reward value post-convergence by 38.48% and 47.17%, respectively, but also significantly reduces the training duration by 81.19% within a multi-threaded computational environment.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"12203-12214"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10843226","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10843226/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Deep reinforcement learning has been widely applied in the field of residential energy management, showcasing considerable promise in enhancing energy efficiency and reducing energy consumption. However, it is observed that some methodologies still suffer from inadequate data exploitation, which results in suboptimal policy performance. In this study, focusing on the residential energy management system, an innovative reinforcement learning method is proposed. This novel method fuses the asynchronous advantage actor-critic architecture with a familiarity-based experience replay mechanism, with the ambition of markedly improving learning efficiency and control performance. Numerical comparisons were made to justify the effectiveness of the method. Experimental results across diverse cases confirm that the proposed algorithm can effectively achieve optimal energy scheduling for residential sectors. Furthermore, the proposed methodology has demonstrated a notable reduction in grid interaction expenses, achieving a decrease of 27.03% and 16.38% relative to the other two scenarios. In comparison with the Proximal Policy Optimization (PPO) and Deep Q-Network (DQN) algorithms, the novel approach not only improves the average reward value post-convergence by 38.48% and 47.17%, respectively, but also significantly reduces the training duration by 81.19% within a multi-threaded computational environment.
基于A3C-FER的住宅能源管理方法
深度强化学习已广泛应用于住宅能源管理领域,在提高能源效率和降低能源消耗方面显示出相当大的前景。然而,观察到一些方法仍然受到数据利用不足的影响,这导致策略性能不佳。本文以住宅能源管理系统为研究对象,提出了一种创新的强化学习方法。该方法将异步优势actor-critic架构与基于熟悉度的经验重放机制相融合,旨在显著提高学习效率和控制性能。数值比较证明了该方法的有效性。不同案例的实验结果表明,该算法可以有效地实现住宅扇区的最优能源调度。此外,与其他两种方案相比,所提出的方法显著降低了网格交互费用,分别降低了27.03%和16.38%。与近端策略优化(PPO)和深度Q-Network (DQN)算法相比,该方法不仅将收敛后的平均奖励值分别提高了38.48%和47.17%,而且在多线程计算环境下,训练时间显著缩短了81.19%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Access
IEEE Access COMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍: IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest. IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on: Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals. Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering. Development of new or improved fabrication or manufacturing techniques. Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信