Category-Contrastive Fine-Grained Crowd Counting and Beyond

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Meijing Zhang;Mengxue Chen;Qi Li;Yanchen Chen;Rui Lin;Xiaolian Li;Shengfeng He;Wenxi Liu
{"title":"Category-Contrastive Fine-Grained Crowd Counting and Beyond","authors":"Meijing Zhang;Mengxue Chen;Qi Li;Yanchen Chen;Rui Lin;Xiaolian Li;Shengfeng He;Wenxi Liu","doi":"10.1109/TMM.2024.3521823","DOIUrl":null,"url":null,"abstract":"Crowd counting has drawn increasing attention across various fields. However, existing crowd counting tasks primarily focus on estimating the overall population, ignoring the behavioral and semantic information of different social groups within the crowd. In this paper, we aim to address a newly proposed research problem, namely fine-grained crowd counting, which involves identifying different categories of individuals and accurately counting them in static images. In order to fully leverage the categorical information in static crowd images, we propose a two-tier salient feature propagation module designed to sequentially extract semantic information from both the crowd and its surrounding environment. Additionally, we introduce a category difference loss to refine the feature representation by highlighting the differences between various crowd categories. Moreover, our proposed framework can adapt to a novel problem setup called few-example fine-grained crowd counting. This setup, unlike the original fine-grained crowd counting, requires only a few exemplar point annotations instead of dense annotations from predefined categories, making it applicable in a wider range of scenarios. The baseline model for this task can be established by substituting the loss function in our proposed model with a novel hybrid loss function that integrates point-oriented cross-entropy loss and category contrastive loss. Through comprehensive experiments, we present results in both the formulation and application of fine-grained crowd counting.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"477-488"},"PeriodicalIF":8.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10814710/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Crowd counting has drawn increasing attention across various fields. However, existing crowd counting tasks primarily focus on estimating the overall population, ignoring the behavioral and semantic information of different social groups within the crowd. In this paper, we aim to address a newly proposed research problem, namely fine-grained crowd counting, which involves identifying different categories of individuals and accurately counting them in static images. In order to fully leverage the categorical information in static crowd images, we propose a two-tier salient feature propagation module designed to sequentially extract semantic information from both the crowd and its surrounding environment. Additionally, we introduce a category difference loss to refine the feature representation by highlighting the differences between various crowd categories. Moreover, our proposed framework can adapt to a novel problem setup called few-example fine-grained crowd counting. This setup, unlike the original fine-grained crowd counting, requires only a few exemplar point annotations instead of dense annotations from predefined categories, making it applicable in a wider range of scenarios. The baseline model for this task can be established by substituting the loss function in our proposed model with a novel hybrid loss function that integrates point-oriented cross-entropy loss and category contrastive loss. Through comprehensive experiments, we present results in both the formulation and application of fine-grained crowd counting.
类别对比细粒度人群计数及其他
人群计数在各个领域引起了越来越多的关注。然而,现有的人群计数任务主要集中在估计总体人口,忽略了人群中不同社会群体的行为和语义信息。在本文中,我们的目标是解决一个新提出的研究问题,即细粒度人群计数,它涉及识别不同类别的个体并在静态图像中准确计数。为了充分利用静态人群图像中的分类信息,我们提出了一种两层显著特征传播模块,旨在从人群及其周围环境中依次提取语义信息。此外,我们引入了类别差异损失,通过突出不同人群类别之间的差异来改进特征表示。此外,我们提出的框架可以适应一种新的问题设置,称为少示例细粒度人群计数。与最初的细粒度人群计数不同,这种设置只需要几个示例点注释,而不是来自预定义类别的密集注释,这使得它适用于更广泛的场景。该任务的基线模型可以通过将我们提出的模型中的损失函数替换为集成了面向点的交叉熵损失和类别对比损失的新型混合损失函数来建立。通过综合实验,我们给出了细粒度人群计数的公式和应用结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信