George Karantaidis;Athanasios Pantsios;Ioannis Kompatsiaris;Symeon Papadopoulos
{"title":"IncSAR: A Dual Fusion Incremental Learning Framework for SAR Target Recognition","authors":"George Karantaidis;Athanasios Pantsios;Ioannis Kompatsiaris;Symeon Papadopoulos","doi":"10.1109/ACCESS.2025.3528633","DOIUrl":null,"url":null,"abstract":"Deep learning techniques have achieved significant success in Synthetic Aperture Radar (SAR) target recognition using predefined datasets in static scenarios. However, real-world applications demand that models incrementally learn new information without forgetting previously acquired knowledge. The challenge of catastrophic forgetting, where models lose past knowledge when adapting to new tasks, remains a critical issue. In this paper, we introduce IncSAR, an incremental learning framework designed to tackle catastrophic forgetting in SAR target recognition. IncSAR combines the power of a Vision Transformer (ViT) and a custom-designed Convolutional Neural Network (CNN) in a dual-branch architecture, integrated via a late-fusion strategy. Additionally, we explore the use of TinyViT to reduce computational complexity and propose an attention mechanism to dynamically enhance feature representation. To mitigate the speckle noise inherent in SAR images, we employ a denoising module based on a neural network approximation of Robust Principal Component Analysis (RPCA), leveraging a simple neural network for efficient noise reduction in SAR imagery. Moreover, a random projection layer improves the linear separability of features, and a variant of Linear Discriminant Analysis (LDA) decorrelates extracted class prototypes for better generalization. Extensive experiments on the MSTAR, SAR-AIRcraft-1.0, and OpenSARShip benchmark datasets demonstrate that IncSAR significantly outperforms state-of-the-art approaches, achieving a 99.63% average accuracy and a 0.33% performance drop, representing an 89% improvement in retention compared to existing techniques. The source code is available at <uri>https://github.com/geokarant/IncSAR</uri>.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"12358-12372"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10838563","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10838563/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning techniques have achieved significant success in Synthetic Aperture Radar (SAR) target recognition using predefined datasets in static scenarios. However, real-world applications demand that models incrementally learn new information without forgetting previously acquired knowledge. The challenge of catastrophic forgetting, where models lose past knowledge when adapting to new tasks, remains a critical issue. In this paper, we introduce IncSAR, an incremental learning framework designed to tackle catastrophic forgetting in SAR target recognition. IncSAR combines the power of a Vision Transformer (ViT) and a custom-designed Convolutional Neural Network (CNN) in a dual-branch architecture, integrated via a late-fusion strategy. Additionally, we explore the use of TinyViT to reduce computational complexity and propose an attention mechanism to dynamically enhance feature representation. To mitigate the speckle noise inherent in SAR images, we employ a denoising module based on a neural network approximation of Robust Principal Component Analysis (RPCA), leveraging a simple neural network for efficient noise reduction in SAR imagery. Moreover, a random projection layer improves the linear separability of features, and a variant of Linear Discriminant Analysis (LDA) decorrelates extracted class prototypes for better generalization. Extensive experiments on the MSTAR, SAR-AIRcraft-1.0, and OpenSARShip benchmark datasets demonstrate that IncSAR significantly outperforms state-of-the-art approaches, achieving a 99.63% average accuracy and a 0.33% performance drop, representing an 89% improvement in retention compared to existing techniques. The source code is available at https://github.com/geokarant/IncSAR.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.