All-Weather Retrieval of Total Column Water Vapor From Aura OMI Visible Observations

IF 4.7 2区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jiafei Xu;Zhizhao Liu
{"title":"All-Weather Retrieval of Total Column Water Vapor From Aura OMI Visible Observations","authors":"Jiafei Xu;Zhizhao Liu","doi":"10.1109/JSTARS.2024.3523048","DOIUrl":null,"url":null,"abstract":"Total column water vapor (TCWV), retrieved from satellite remotely sensed measurements, plays a critically important role in monitoring Earth's weather and climate. The ozone monitoring instrument (OMI) can obtain daily near-global TCWV observations using the visible spectra. The observational accuracy of OMI-estimated TCWV under cloudy-sky conditions is much poorer than OMI-measured clear-sky TCWV. Satellite-based OMI-derived TCWV data, observed with little cloud contamination, are solely used, which, in general, are limited and discontinuous observations. We propose a practical machine learning-based TCWV retrieval algorithm to derive TCWV over land from OMI visible observations under all weather conditions, considering multiple dependable factors linked with OMI TCWV and air mass factor. The global TCWV data, observed from 6000 global navigation satellite system (GNSS)-based training stations in 2017, are utilized as the expected TCWV estimates in the algorithm training process. The retrieval approach is validated in 2018–2020 across the world using ground-based TCWV from additional 4,465 GNSS-based verification stations and 783 radiosonde-based verification stations. The newly retrieved TCWV estimates remarkably outperform operational OMI-retrieved water vapor data, regardless of cloud fraction and TCWV levels. In terms of root-mean-square error, it is overall reduced by 90.44% from 56.38 to 5.39 mm and 90.19% from 53.23 to 5.22 mm compared with GNSS and radiosonde TCWV, respectively. The retrieval algorithm stays stable, both temporally and spatially. This research provides a valuable technique to precisely retrieve OMI-based TCWV data records under all weather conditions, which could be applicable to other satellite-borne visible sensors like GOME-2, SCIAMACHY, and TROPOMI.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"3057-3070"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10816453","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10816453/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Total column water vapor (TCWV), retrieved from satellite remotely sensed measurements, plays a critically important role in monitoring Earth's weather and climate. The ozone monitoring instrument (OMI) can obtain daily near-global TCWV observations using the visible spectra. The observational accuracy of OMI-estimated TCWV under cloudy-sky conditions is much poorer than OMI-measured clear-sky TCWV. Satellite-based OMI-derived TCWV data, observed with little cloud contamination, are solely used, which, in general, are limited and discontinuous observations. We propose a practical machine learning-based TCWV retrieval algorithm to derive TCWV over land from OMI visible observations under all weather conditions, considering multiple dependable factors linked with OMI TCWV and air mass factor. The global TCWV data, observed from 6000 global navigation satellite system (GNSS)-based training stations in 2017, are utilized as the expected TCWV estimates in the algorithm training process. The retrieval approach is validated in 2018–2020 across the world using ground-based TCWV from additional 4,465 GNSS-based verification stations and 783 radiosonde-based verification stations. The newly retrieved TCWV estimates remarkably outperform operational OMI-retrieved water vapor data, regardless of cloud fraction and TCWV levels. In terms of root-mean-square error, it is overall reduced by 90.44% from 56.38 to 5.39 mm and 90.19% from 53.23 to 5.22 mm compared with GNSS and radiosonde TCWV, respectively. The retrieval algorithm stays stable, both temporally and spatially. This research provides a valuable technique to precisely retrieve OMI-based TCWV data records under all weather conditions, which could be applicable to other satellite-borne visible sensors like GOME-2, SCIAMACHY, and TROPOMI.
从Aura OMI可见光观测资料中全天候检索总水柱水蒸气
从卫星遥感测量中获取的总水柱水蒸气(twv)在监测地球天气和气候方面起着至关重要的作用。臭氧监测仪(OMI)可以利用可见光光谱获得每日近全球twv观测值。在阴天条件下,omi估算的twv的观测精度远低于omi测量的晴空twv。基于卫星的omi衍生的twv数据,观测到的云污染很少,被单独使用,通常是有限的和不连续的观测。我们提出了一种实用的基于机器学习的twv检索算法,该算法考虑了与OMI twv和气团因子相关的多个可靠因素,从所有天气条件下的OMI可见观测数据中获得陆地上的twv。在算法训练过程中,使用2017年6000个基于全球导航卫星系统(GNSS)的训练站观测到的全球TCWV数据作为预期TCWV估计值。2018-2020年,该检索方法在全球范围内使用地面twv进行验证,这些twv来自另外4,465个基于gnss的验证站和783个基于无线电探空仪的验证站。无论云分数和twv水平如何,新检索的twv估计值明显优于运行的omi检索的水蒸气数据。均方根误差总体上比GNSS和探空twv分别从56.38 ~ 5.39 mm和53.23 ~ 5.22 mm降低了90.44%和90.19%。检索算法在时间和空间上都保持稳定。本研究为在所有气象条件下精确检索基于omi的twv数据记录提供了一种有价值的技术,可应用于GOME-2、SCIAMACHY和TROPOMI等其他星载可见光传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
10.90%
发文量
563
审稿时长
4.7 months
期刊介绍: The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信