{"title":"Global Elevation Inversion for Multiband Spaceborne Lidar: Predevelopment of Forest Canopy Height","authors":"Haowei Zhang;Wei Gong;Hu He;Yue Ma;Weibiao Chen;Jiqiao Liu;Ge Han;Zhiyu Gao;Wanqi Zhong;Xin Ma","doi":"10.1109/JSTARS.2024.3522330","DOIUrl":null,"url":null,"abstract":"Compared to single-band spaceborne lidars such as the global ecosystem dynamics investigation (GEDI) and Ice, Cloud and Land Elevation Satellite-2 (ICESat-2), multiband spaceborne lidars improve the detection of the canopy and ground. However, research on geographic elevation inversion with multi-band spaceborne lidars is limited, especially in developing algorithms that fully utilize multiple wavelengths for accurate measurements. A high-precision multiband fusion algorithm (MBFA) is proposed for global geographic elevation inversion for multiband spaceborne lidar of China's Daqi-1 satellite (DQ-1), enhancing the ranging capability of the 1572 nm channel by approximately 5 times. Compared with ICESat-2, GEDI and airborne scanning data in Finland, the geographic elevation results of MBFA showed average biases of –0.09, 0.1, and –0.95 m, with root mean square errors (RMSE) of 3.68, 4.51, and 7.70 m, respectively. Accurate forest canopy heights can be obtained using the decomposed signal approach in MBFA, which has been verified in Finland. The validation results (<italic>R</i><sup>2</sup> = 0.72, RMSE = 1.38 m, BIAS = –0.75 m) demonstrate the DQ-1 satellite's effectiveness in measuring canopy height. The results indicate that the MBFA model has potential for global forest canopy height extraction and carbon sink research. The proposed MBFA can also provide guide for high-precision inversion of future multiband lidar satellites.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"2928-2941"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10815618","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10815618/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Compared to single-band spaceborne lidars such as the global ecosystem dynamics investigation (GEDI) and Ice, Cloud and Land Elevation Satellite-2 (ICESat-2), multiband spaceborne lidars improve the detection of the canopy and ground. However, research on geographic elevation inversion with multi-band spaceborne lidars is limited, especially in developing algorithms that fully utilize multiple wavelengths for accurate measurements. A high-precision multiband fusion algorithm (MBFA) is proposed for global geographic elevation inversion for multiband spaceborne lidar of China's Daqi-1 satellite (DQ-1), enhancing the ranging capability of the 1572 nm channel by approximately 5 times. Compared with ICESat-2, GEDI and airborne scanning data in Finland, the geographic elevation results of MBFA showed average biases of –0.09, 0.1, and –0.95 m, with root mean square errors (RMSE) of 3.68, 4.51, and 7.70 m, respectively. Accurate forest canopy heights can be obtained using the decomposed signal approach in MBFA, which has been verified in Finland. The validation results (R2 = 0.72, RMSE = 1.38 m, BIAS = –0.75 m) demonstrate the DQ-1 satellite's effectiveness in measuring canopy height. The results indicate that the MBFA model has potential for global forest canopy height extraction and carbon sink research. The proposed MBFA can also provide guide for high-precision inversion of future multiband lidar satellites.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.