Guoshi Liu;Bin Wang;Qian Sun;Jun Hu;Lei-Lei Liu;Wanji Zheng;Liye Zou
{"title":"New Insights Into the Reservoir Landslide Deformation Mechanism From InSAR and Numerical Simulation Technology","authors":"Guoshi Liu;Bin Wang;Qian Sun;Jun Hu;Lei-Lei Liu;Wanji Zheng;Liye Zou","doi":"10.1109/JSTARS.2024.3523294","DOIUrl":null,"url":null,"abstract":"Reservoir landslides represent a significant geological hazard that jeopardizes the safety of reservoirs. Deformation monitoring and numerical simulation are essential methodologies for elucidating the evolutionary patterns of landslides. Nonetheless, the existing approaches exhibit limitations in revealing the potential deformation mechanism. Consequently, this study proposes an innovative strategy that incorporates interferometric synthetic aperture radar (InSAR) deformation characteristics alongside fluid–solid coupling stress analysis to investigate the deformation, focusing on the Shuizhuyuan landslide within the Three Gorges Reservoir area as a case study. Using temporary coherence point InSAR technology, significant motion units were identified, with a maximum deformation rate of −60 mm/yr. The complete deformation time series reveals three independent components of landslide movement and their trigger factors geometrically. Subsequently, the saturation permeability coefficient of the sliding mass in the seepage analysis is modified with the assistance of InSAR deformation. Then, we coupled the seepage analysis results to FLAC3D model for stress and strain analysis, and determined the seepage-induced progressive failure mechanism and the deformation mode of the Shuizhuyuan landslide, driven by reservoir water-level (RWL) drop. The numerical simulation results aid in interpreting the deformation mechanism of different spatial and temporal patterns of landslides from three aspects: hydrodynamic pressure from rainfall infiltration, groundwater hysteresis caused by RWL drop, and seepage forces from RWL rise. Furthermore, our findings reveal that the dynamic factor of safety (FOS) of landslide during the InSAR observation period is highly consistent with the periodic fluctuations of the RWL. However, there is also a small trend of overall decline in FOS that cannot be ignored.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"2908-2927"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10817503","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10817503/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Reservoir landslides represent a significant geological hazard that jeopardizes the safety of reservoirs. Deformation monitoring and numerical simulation are essential methodologies for elucidating the evolutionary patterns of landslides. Nonetheless, the existing approaches exhibit limitations in revealing the potential deformation mechanism. Consequently, this study proposes an innovative strategy that incorporates interferometric synthetic aperture radar (InSAR) deformation characteristics alongside fluid–solid coupling stress analysis to investigate the deformation, focusing on the Shuizhuyuan landslide within the Three Gorges Reservoir area as a case study. Using temporary coherence point InSAR technology, significant motion units were identified, with a maximum deformation rate of −60 mm/yr. The complete deformation time series reveals three independent components of landslide movement and their trigger factors geometrically. Subsequently, the saturation permeability coefficient of the sliding mass in the seepage analysis is modified with the assistance of InSAR deformation. Then, we coupled the seepage analysis results to FLAC3D model for stress and strain analysis, and determined the seepage-induced progressive failure mechanism and the deformation mode of the Shuizhuyuan landslide, driven by reservoir water-level (RWL) drop. The numerical simulation results aid in interpreting the deformation mechanism of different spatial and temporal patterns of landslides from three aspects: hydrodynamic pressure from rainfall infiltration, groundwater hysteresis caused by RWL drop, and seepage forces from RWL rise. Furthermore, our findings reveal that the dynamic factor of safety (FOS) of landslide during the InSAR observation period is highly consistent with the periodic fluctuations of the RWL. However, there is also a small trend of overall decline in FOS that cannot be ignored.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.