New Insights Into the Reservoir Landslide Deformation Mechanism From InSAR and Numerical Simulation Technology

IF 4.7 2区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Guoshi Liu;Bin Wang;Qian Sun;Jun Hu;Lei-Lei Liu;Wanji Zheng;Liye Zou
{"title":"New Insights Into the Reservoir Landslide Deformation Mechanism From InSAR and Numerical Simulation Technology","authors":"Guoshi Liu;Bin Wang;Qian Sun;Jun Hu;Lei-Lei Liu;Wanji Zheng;Liye Zou","doi":"10.1109/JSTARS.2024.3523294","DOIUrl":null,"url":null,"abstract":"Reservoir landslides represent a significant geological hazard that jeopardizes the safety of reservoirs. Deformation monitoring and numerical simulation are essential methodologies for elucidating the evolutionary patterns of landslides. Nonetheless, the existing approaches exhibit limitations in revealing the potential deformation mechanism. Consequently, this study proposes an innovative strategy that incorporates interferometric synthetic aperture radar (InSAR) deformation characteristics alongside fluid–solid coupling stress analysis to investigate the deformation, focusing on the Shuizhuyuan landslide within the Three Gorges Reservoir area as a case study. Using temporary coherence point InSAR technology, significant motion units were identified, with a maximum deformation rate of −60 mm/yr. The complete deformation time series reveals three independent components of landslide movement and their trigger factors geometrically. Subsequently, the saturation permeability coefficient of the sliding mass in the seepage analysis is modified with the assistance of InSAR deformation. Then, we coupled the seepage analysis results to FLAC3D model for stress and strain analysis, and determined the seepage-induced progressive failure mechanism and the deformation mode of the Shuizhuyuan landslide, driven by reservoir water-level (RWL) drop. The numerical simulation results aid in interpreting the deformation mechanism of different spatial and temporal patterns of landslides from three aspects: hydrodynamic pressure from rainfall infiltration, groundwater hysteresis caused by RWL drop, and seepage forces from RWL rise. Furthermore, our findings reveal that the dynamic factor of safety (FOS) of landslide during the InSAR observation period is highly consistent with the periodic fluctuations of the RWL. However, there is also a small trend of overall decline in FOS that cannot be ignored.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"2908-2927"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10817503","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10817503/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Reservoir landslides represent a significant geological hazard that jeopardizes the safety of reservoirs. Deformation monitoring and numerical simulation are essential methodologies for elucidating the evolutionary patterns of landslides. Nonetheless, the existing approaches exhibit limitations in revealing the potential deformation mechanism. Consequently, this study proposes an innovative strategy that incorporates interferometric synthetic aperture radar (InSAR) deformation characteristics alongside fluid–solid coupling stress analysis to investigate the deformation, focusing on the Shuizhuyuan landslide within the Three Gorges Reservoir area as a case study. Using temporary coherence point InSAR technology, significant motion units were identified, with a maximum deformation rate of −60 mm/yr. The complete deformation time series reveals three independent components of landslide movement and their trigger factors geometrically. Subsequently, the saturation permeability coefficient of the sliding mass in the seepage analysis is modified with the assistance of InSAR deformation. Then, we coupled the seepage analysis results to FLAC3D model for stress and strain analysis, and determined the seepage-induced progressive failure mechanism and the deformation mode of the Shuizhuyuan landslide, driven by reservoir water-level (RWL) drop. The numerical simulation results aid in interpreting the deformation mechanism of different spatial and temporal patterns of landslides from three aspects: hydrodynamic pressure from rainfall infiltration, groundwater hysteresis caused by RWL drop, and seepage forces from RWL rise. Furthermore, our findings reveal that the dynamic factor of safety (FOS) of landslide during the InSAR observation period is highly consistent with the periodic fluctuations of the RWL. However, there is also a small trend of overall decline in FOS that cannot be ignored.
InSAR与数值模拟技术对水库滑坡变形机理的新认识
水库滑坡是危害水库安全的重大地质灾害。变形监测和数值模拟是阐明滑坡演化规律的重要方法。然而,现有的方法在揭示潜在的变形机制方面存在局限性。因此,本研究以三峡库区水竹园滑坡为例,提出了一种结合干涉合成孔径雷达(InSAR)变形特征和流固耦合应力分析的创新策略。利用临时相干点InSAR技术,识别出了显著的运动单元,最大变形率为−60 mm/yr。完整的变形时间序列几何上揭示了滑坡运动的三个独立分量及其触发因素。随后,利用InSAR变形修正了渗流分析中滑动体的饱和渗透系数。然后,将渗流分析结果与FLAC3D模型相结合,进行应力应变分析,确定了水珠园滑坡在水库水位下降驱动下的渗流渐进破坏机制和变形模式。数值模拟结果从降雨入渗引起的动水压力、RWL下降引起的地下水滞后和RWL上升引起的渗流力三个方面解释了滑坡不同时空格局的变形机制。此外,InSAR观测期间滑坡的动态安全系数(FOS)与RWL的周期性波动高度一致。然而,FOS也有一个整体下降的小趋势,这是不可忽视的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
10.90%
发文量
563
审稿时长
4.7 months
期刊介绍: The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信