Classification of Buried Objects From Ground Penetrating Radar Images by Using Second-Order Deep Learning Models

IF 4.7 2区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Douba Jafuno;Ammar Mian;Guillaume Ginolhac;Nickolas Stelzenmuller
{"title":"Classification of Buried Objects From Ground Penetrating Radar Images by Using Second-Order Deep Learning Models","authors":"Douba Jafuno;Ammar Mian;Guillaume Ginolhac;Nickolas Stelzenmuller","doi":"10.1109/JSTARS.2024.3524424","DOIUrl":null,"url":null,"abstract":"In this article, a new classification model based on covariance matrices is built in order to classify buried objects. The inputs of the proposed models are the hyperbola thumbnails obtained with a classical ground penetrating radar (GPR) system. These thumbnails are then inputs to the first layers of a classical CNN, which then produces a covariance matrix using the outputs of the convolutional filters. Next, the covariance matrix is given to a network composed of specific layers to classify symmetric positive definite matrices. We show in a large database that our approach outperform shallow networks designed for GPR data and conventional CNNs typically used in computer vision applications, particularly when the number of training data decreases and in the presence of mislabeled data. We also illustrate the interest of our models when training data and test sets are obtained from different weather modes or considerations.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"3185-3197"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10836936","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10836936/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, a new classification model based on covariance matrices is built in order to classify buried objects. The inputs of the proposed models are the hyperbola thumbnails obtained with a classical ground penetrating radar (GPR) system. These thumbnails are then inputs to the first layers of a classical CNN, which then produces a covariance matrix using the outputs of the convolutional filters. Next, the covariance matrix is given to a network composed of specific layers to classify symmetric positive definite matrices. We show in a large database that our approach outperform shallow networks designed for GPR data and conventional CNNs typically used in computer vision applications, particularly when the number of training data decreases and in the presence of mislabeled data. We also illustrate the interest of our models when training data and test sets are obtained from different weather modes or considerations.
基于二阶深度学习模型的探地雷达图像地物分类
本文建立了一种新的基于协方差矩阵的地物分类模型。该模型的输入是经典探地雷达系统得到的双曲线缩略图。然后,这些缩略图被输入到经典CNN的第一层,然后使用卷积滤波器的输出产生协方差矩阵。然后,将协方差矩阵赋给由特定层组成的网络,对对称正定矩阵进行分类。我们在一个大型数据库中表明,我们的方法优于为GPR数据设计的浅层网络和计算机视觉应用中通常使用的传统cnn,特别是在训练数据数量减少和存在错误标记数据的情况下。当训练数据和测试集来自不同的天气模式或考虑因素时,我们还说明了我们模型的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
10.90%
发文量
563
审稿时长
4.7 months
期刊介绍: The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信