Sustainable Diffusion-Based Incentive Mechanism for Generative AI-Driven Digital Twins in Industrial Cyber-Physical Systems

Jinbo Wen;Jiawen Kang;Dusit Niyato;Yang Zhang;Shiwen Mao
{"title":"Sustainable Diffusion-Based Incentive Mechanism for Generative AI-Driven Digital Twins in Industrial Cyber-Physical Systems","authors":"Jinbo Wen;Jiawen Kang;Dusit Niyato;Yang Zhang;Shiwen Mao","doi":"10.1109/TICPS.2024.3524483","DOIUrl":null,"url":null,"abstract":"Industrial Cyber-Physical Systems (ICPSs) are an integral component of modern manufacturing and industries. By digitizing data throughout product life cycles, Digital Twins (DTs) in ICPSs enable a shift from current industrial infrastructures to intelligent and adaptive infrastructures. Thanks to data process capability, Generative Artificial Intelligence (GenAI) can drive the construction and update of DTs to improve predictive accuracy and prepare for diverse smart manufacturing. However, mechanisms that leverage Industrial Internet of Things (IIoT) devices to share sensing data for DT construction are susceptible to adverse selection problems. In this paper, we first develop a GenAI-driven DT architecture in ICPSs. To address the adverse selection problem caused by information asymmetry, we propose a contract theory model and develop a sustainable diffusion-based soft actor-critic algorithm to identify the optimal feasible contract. Specifically, we leverage dynamic structured pruning techniques to reduce parameter numbers of actor networks, allowing sustainability and efficient implementation of the proposed algorithm. Numerical results demonstrate the effectiveness of the proposed scheme and the algorithm, enabling efficient DT construction and updates to monitor and manage ICPSs.","PeriodicalId":100640,"journal":{"name":"IEEE Transactions on Industrial Cyber-Physical Systems","volume":"3 ","pages":"139-149"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industrial Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10818642/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Industrial Cyber-Physical Systems (ICPSs) are an integral component of modern manufacturing and industries. By digitizing data throughout product life cycles, Digital Twins (DTs) in ICPSs enable a shift from current industrial infrastructures to intelligent and adaptive infrastructures. Thanks to data process capability, Generative Artificial Intelligence (GenAI) can drive the construction and update of DTs to improve predictive accuracy and prepare for diverse smart manufacturing. However, mechanisms that leverage Industrial Internet of Things (IIoT) devices to share sensing data for DT construction are susceptible to adverse selection problems. In this paper, we first develop a GenAI-driven DT architecture in ICPSs. To address the adverse selection problem caused by information asymmetry, we propose a contract theory model and develop a sustainable diffusion-based soft actor-critic algorithm to identify the optimal feasible contract. Specifically, we leverage dynamic structured pruning techniques to reduce parameter numbers of actor networks, allowing sustainability and efficient implementation of the proposed algorithm. Numerical results demonstrate the effectiveness of the proposed scheme and the algorithm, enabling efficient DT construction and updates to monitor and manage ICPSs.
工业信息物理系统中生成式人工智能驱动数字孪生的可持续扩散激励机制
工业信息物理系统(icps)是现代制造业和工业的重要组成部分。通过在整个产品生命周期中数字化数据,icps中的数字双胞胎(dt)实现了从当前工业基础设施向智能和自适应基础设施的转变。由于具有数据处理能力,生成式人工智能(GenAI)可以驱动dt的构建和更新,以提高预测精度,为多样化的智能制造做好准备。然而,利用工业物联网(IIoT)设备共享用于DT构建的传感数据的机制容易受到逆向选择问题的影响。在本文中,我们首先在icp中开发了一个genai驱动的DT架构。为了解决信息不对称导致的逆向选择问题,我们提出了契约理论模型,并开发了一种基于可持续扩散的软行为者批评算法来识别最优可行契约。具体来说,我们利用动态结构化修剪技术来减少行动者网络的参数数量,从而允许所提出的算法的可持续性和高效实现。数值结果证明了该方案和算法的有效性,实现了有效的DT构建和更新,以监测和管理icps。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信