Yueying Zhou;Junji Jiang;Lijun Wang;Shanshan Liang;Hao Liu
{"title":"Enhanced Cognitive Load Detection in Air Traffic Control Operators Using EEG and a Hybrid Deep Learning Approach","authors":"Yueying Zhou;Junji Jiang;Lijun Wang;Shanshan Liang;Hao Liu","doi":"10.1109/ACCESS.2025.3530091","DOIUrl":null,"url":null,"abstract":"The automatic and effective detection of cognitive load for air traffic control (ATC) operators through electroencephalography (EEG) signals provides a covert and objective method for enhancing ATC safety. Nevertheless, the extant paradigm is limited to simple cognitive tasks and lacks real-world scenarios. In this study, a cognitive load-elicited experiment was therefore designed to record the EEG data of eight ATC operators under four distinct simulation scenarios, ascertaining whether they experienced varying degrees of workload. Subsequently, the collected EEG signal was preprocessed. We then used one hybrid deep learning model based on the convolutional layers and a self-attention mechanism to extract the pertinent EEG features. In conjunction with multi-layer perceptron, we decoded cognitive load state into low, high, overload, and special. The experimental results demonstrated that EEG could serve as a reliable measure for predicting ATC load, with an average accuracy of 88.76% and a peak accuracy of 99% at the single-subject level. Additionally, it highlighted the critical role of the frontal regions in decoding cognitive load. This study serves to enhance the efficacy of personalized EEG decoding for ATC operators, furnishing evidence for the feasibility of developing an intelligent load-detecting system.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"12127-12137"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10843192","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10843192/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The automatic and effective detection of cognitive load for air traffic control (ATC) operators through electroencephalography (EEG) signals provides a covert and objective method for enhancing ATC safety. Nevertheless, the extant paradigm is limited to simple cognitive tasks and lacks real-world scenarios. In this study, a cognitive load-elicited experiment was therefore designed to record the EEG data of eight ATC operators under four distinct simulation scenarios, ascertaining whether they experienced varying degrees of workload. Subsequently, the collected EEG signal was preprocessed. We then used one hybrid deep learning model based on the convolutional layers and a self-attention mechanism to extract the pertinent EEG features. In conjunction with multi-layer perceptron, we decoded cognitive load state into low, high, overload, and special. The experimental results demonstrated that EEG could serve as a reliable measure for predicting ATC load, with an average accuracy of 88.76% and a peak accuracy of 99% at the single-subject level. Additionally, it highlighted the critical role of the frontal regions in decoding cognitive load. This study serves to enhance the efficacy of personalized EEG decoding for ATC operators, furnishing evidence for the feasibility of developing an intelligent load-detecting system.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.